
An important direction in the recent development of
formal models of perceptual categorization has been to
account for the time course of classification decision mak-
ing. As current models grow increasingly sophisticated,
many are able to account for the same fundamental patterns
of results regarding rates of learning, overall accuracy, and
patterns of generalization. By requiring competing mod-
els to simultaneously account for classification response
time (RT), additional constraints are provided for choosing
among them, and a deeper understanding of the processes
underlying perceptual categorization may be obtained.

The purpose of the present research was to test two re-
cently developed models on their ability to account for fun-
damental patterns of results involving multidimensional
speeded perceptual classification. The models under inves-
tigation are the exemplar-based random walk model pro-
posed by Nosofsky and Palmeri (1997; Palmeri, 1997)
and the decision-bound model proposed by Ashby and
Maddox (1991, 1994; Ashby, Boynton, & Lee, 1994;
Maddox & Ashby, 1996). An infinite variety of speeded
classification paradigms can be designed for comparing
the models, but we hoped to initiate the investigation by
collecting data that researchers might regard as funda-
mental. With this goal in mind, we used as an experimen-
tal paradigm the classic set of speeded categorization tasks
used by Garner (1974) and his colleagues for distinguish-

ing between integral and separable dimensions. These
tasks provide canonical information about how basic ma-
nipulations of stimulus structure influence multidimen-
sional classification RT, so we judged them to serve well
as a fundamental testing ground. Also, Ashby and Mad-
dox (1994) and Maddox and Ashby (1996) have already
begun extensive theoretical and empirical investigations
into the ability of the decision-bound model to account
for performance in these tasks, so this arena seemed like
a particularly attractive one in which to conduct the model
comparisons.

Beyond comparing the models on their ability to sim-
ply predict mean RTs in these tasks, we followed Maddox
and Ashby (1996) by focusing on the ability of the mod-
els to predict the structure of the entire set of RT distribu-
tions. An important advantage of this research approach
is that the RT distributions provide far more constraints
for model fitting than do the means alone (e.g., Ratcliff &
Murdock, 1976). Indeed, one of the major themes in the
present research involves the demonstration that, al-
though certain versions of the models yield excellent ac-
counts of the mean RTs in these tasks, they are falsified
in striking fashion when one considers the full structure
of the RT distributions.

We organize our article by first briefly reviewing the
exemplar-based random-walk model and the decision-
bound model of speeded classification. Next, we review
the speeded classification tasks under investigation and the
main patterns of performance that have been observed in
previous research. We then introduce some important is-
sues concerning how the alternative models might fare in
accounting for the main patterns of data in these tasks.
Finally, in the main section of the article, we conduct rig-
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orous quantitative tests of the ability of the models to fit
the actual RT distributions and accuracy rates observed
for individual stimuli in the Garner speeded classifica-
tion tasks.

EXEMPLAR-BASED
RANDOM-WALK MODEL

The exemplar-based random-walk (EBRW) model pro-
posed by Nosofsky and Palmeri (1997) combines elements
of Nosofsky’s (1984, 1986) generalized context model of
categorization and Logan’s (1988, 1992) instance-based
model of automaticity. According to the EBRW model,
people represent categories by storing individual exem-
plars of categories in memory. When an item is presented
to be classified, it acts as a retrieval cue for the stored ex-
emplars. The exemplars race to be retrieved, with rates de-
termined by how similar they are to the presented item.
These retrieved exemplars then provide incremental in-
formation that enters into a random-walk process for mak-
ing classification decisions (e.g., Busemeyer, 1982; Link
& Heath, 1975; Luce, 1986; Townsend & Ashby, 1983).

We start by reviewing the similarity assumptions in the
model. In the EBRW model, exemplars are represented
as points in a multidimensional psychological space, and
similarity between exemplars is a decreasing function of
their distance in the space. Selective attention processes
systematically modify the structure of the space in which
the exemplars are embedded. Specifically, the distance
between exemplars i and j, (di j), is given by

(1)

where xim is the psychological value of exemplar i on di-
mension m, and M is the number of dimensions compos-
ing the objects. The value of γ in Equation 1 determines
the distance metric of the space. Common values are γ �
1, which yields a city-block distance metric; and γ � 2,
which yields a Euclidean metric (Garner, 1974; Shepard,
1964, 1991). The parameters wm (0 ≤ wm ≤ 1, ∑wm � 1)
form a set of “attention weights” given to each dimen-
sion m. Research suggests that observers are inclined to
attend selectively to those dimensions that are relevant
for performing a classification and to ignore dimensions
that are irrelevant. However, the extent to which this se-
lective attention process operates depends on the types
of dimensions that compose the objects. Selective atten-
tion operates readily for stimuli composed of “separable”
dimensions but is more difficult for stimuli composed of
“integral” dimensions (e.g., Garner, 1974; McKinley &
Nosofsky, 1996; Nosofsky, 1987; Nosofsky & Palmeri,
1996; Shepard, 1964; Shepard & Chang, 1963). Finally,
the similarity between exemplars i and j is an exponential
decay function of their distance in the psychological space,

sij � exp(�c � di j ), (2)

where c is an overall scaling parameter (Shepard, 1987).

When an item is presented to be classified, it causes
all exemplars in memory to be “activated.” Because of
factors such as recency of presentation, exemplars may
reside in memory with differing strengths. Let Hj denote
the memory strength for exemplar j. Then, when item i
is presented, the activation for exemplar j is given by

ai j � Hj � si j . (3)

That is, exemplar activation is determined jointly by the
exemplar’s strength in memory and by its similarity to the
test item.

All activated exemplars race to be retrieved from mem-
ory. The race process is stochastic. Specifically, the exem-
plars race exponentially with rates determined by their
activation values. (For similar assumptions concerning ex-
emplar race processes, see, for example, Bundesen, 1990,
Logan, 1997, and Marley, 1992.) The probability density
that exemplar j completes its race at time t, given test item i,
is given by

f (t) � ai j exp(�ai j � t). (4)

The first exemplar to complete its race is retrieved. Thus,
those exemplars most likely to be retrieved are the ones
with the greatest memory strengths and that are highly
similar to the test item.

The retrieved exemplars drive a random-walk process,
as illustrated in Figure 1. There is a random-walk counter
with initial value zero. The observer establishes criteria
representing the amount of evidence needed to execute
either a Category A response (+A) or a Category B re-
sponse (�B). If the retrieved exemplar belongs to Cate-
gory A, then the counter is increased by unit value,
whereas if the retrieved exemplar belongs to Category B,
then the counter is decreased by unit value. If the counter
reaches either the +A or the �B criterion, then the appro-
priate categorization response is made. Otherwise, a new
race is initiated, a second exemplar is retrieved, and the
process continues.

The time to take each step in the random walk is given
by

∆T � α + tx , (5)

where α is a constant term associated with each step, and
tx is the time that it takes to retrieve the winning exem-
plar. Note that on each step of the random walk, the cat-
egory label associated with the retrieved exemplar needs
to be extracted, and the appropriate information then is
accumulated on the counter. A psychological interpreta-
tion for the α parameter is that it represents the time
needed for this category-label extraction and accumula-
tion process.

The random-walk process just described determines
the time for classification decision-making to occur. Total
RT is also affected by the duration of other stages of pro-
cessing, such as encoding and response-execution. For
simplicity, we assume that the overall duration of these
other residual stages of processing is normally distributed
with mean µR and variance σR

2. Furthermore, we assume

d w x xij m im jm
m

M

= −










=
∑ | | ,

/
γ

γ

1

1



SPEEDED PERCEPTUAL CLASSIFICATION 1029

that the distribution of residual times is the same for all
stimuli and is independent of the duration of the decision-
making stage.1

It is useful at this point to discuss some main concep-
tual predictions associated with the EBRW model. Note
that, according to the model, classification RT is deter-
mined jointly by the number of steps required to complete
the random walk and by the speed with which these indi-
vidual steps are made. One major prediction is that clas-
sification RT should be fastest (and accuracy greatest) for
objects that are similar to the exemplars of one category
and dissimilar to the exemplars of the contrast category.
Under such circumstances, each exemplar that is retrieved
tends to belong to the same category, and the random walk
marches consistently to the appropriate category criterion.
By contrast, items that are similar to the exemplars of both
categories result in slow RTs. The reason is that the ran-
dom walk will tend to wander back and forth, sometimes
retrieving exemplars from one category and other times
retrieving exemplars from the other category.

A second prediction is that increased experience with
specific exemplars should facilitate performance on these
items. As experience with a specific exemplar increases,
more tokens of that exemplar come to be stored in mem-
ory. Thus, a greater number of tokens of the exemplar race
to be retrieved when an item is presented at test. A funda-
mental statistical prediction of parallel race-horse models
is that the greater the number of tokens of an exemplar that
race to be retrieved, the faster the winning retrieval time
tends to be (e.g., Logan, 1988; Raab, 1962; Townsend &
Ashby, 1983). Intuitively, the greater the number of ex-
emplar tokens that participate in the race, the greater is the
probability that at least one of the retrieval times will be
particularly fast. These faster winning retrieval times re-
sult in faster individual steps in the random-walk process
(Equation 5). As will be seen, these properties of the
EBRW model are important for explaining the perfor-
mance patterns in the Garner speeded classification tasks.

DECISION-BOUND MODEL

Ashby’s decision-bound model (DBM) combines con-
cepts from the general recognition theory (GRT) of
Ashby and Townsend (1986) with a descriptive model of
RT known as the RT–distance hypothesis (Ashby et al.,
1994). In describing the model, we limit consideration to
situations in which the stimuli vary along two dimensions,
which is true of the Garner speeded classification tasks
under current investigation. According to GRT, each stim-
ulus gives rise to a bivariate normal distribution in a per-
ceptual space. This assumption of variability in the under-
lying perceptual representation associated with multiple
presentations of a stimulus lies at the heart of GRT. Each
bivariate normal distribution is described by a mean and
variance along each dimension and by a correlation be-
tween dimensions. Furthermore, an observer establishes
a decision bound to partition the perceptual space into re-
sponse regions. Any time a stimulus gives rise to a percept
that falls in Region A, a Category A response is made.

Classification RTs are predicted by the model in ac-
cord with Ashby et al.’s (1994, p. 11) RT–distance hy-
pothesis: “RT decreases with the distance in psychological
space from the stimulus representation to the decision
bound that separates the exemplars of the contrasting
categories.” Although highly descriptive in nature, the RT–
distance hypothesis has a long history of success in uni-
dimensional domains (see Ashby et al., 1994, for a review),
and recent extensions to multidimensional RTs also seem
extremely promising (Ashby et al., 1994; Maddox &
Ashby, 1996; Thomas, 1996).

To derive quantitative predictions from the DBM, spe-
cific assumptions need to be introduced regarding the
form of the function that relates RT to distance from the
boundary. Following Maddox and Ashby (1996) and Mur-
dock (1985), we assume that decision time (TD) is related
to distance-from-bound (D) by means of an exponential
decay function,

Figure 1. Schematic illustration of the random-walk process in the EBRW
model.
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TD � k � exp(�β � D), (6)

where the parameter β determines the rate at which RT de-
creases, and k gives the maximum decision time (when
D � 0).2 Furthermore, to test the model, specific assump-
tions need to be introduced regarding the form of the de-
cision bounds that are used for partitioning the perceptual
space into response regions. We discuss this issue in some
depth after introducing the Garner speeded classification
tasks.

Finally, the RT–distance hypothesis is intended to de-
scribe the time course of the classification decision-
making stage. We follow Maddox and Ashby (1996) by
assuming that the overall duration of residual stages of
processing is normally distributed with mean µR and vari-
ance σR

2, independent of the stimulus that is presented.
Note that this assumption is the same as we made for the
EBRW model.

GARNER’S (1974)
SPEEDED CLASSIFICATION TASKS

The basic setup for Garner’s (1974, chap. 6) speeded
classification tasks is illustrated schematically in Figure 2.
There are four stimuli varying along two dimensions, with
two values per dimension, and the dimension values are
roughly equally discriminable. In all tasks, the require-
ment is to classify each stimulus into its assigned cate-
gory as rapidly as possible without making errors.

In the control task, on each trial, one of two possible
stimuli that vary along one dimension is presented. An
example is to classify Stimulus A into Category 1 and
Stimulus B into Category 2. The key aspect of the control
task is that a single dimension is relevant for classifying
each object (Dimension 1 in the A vs. B example), and

values on the irrelevant dimension are held constant. In
the filtering task, on each trial, any one of the four stim-
uli in the complete set is presented. As is the case in the
control task, a single dimension is relevant for classify-
ing the objects, but now values along the irrelevant dimen-
sion vary. An example is to classify Stimuli A and C into
Category 1 and Stimuli B and D into Category 2. In the
correlated task, one of two stimuli is presented on each
trial, but they differ along both dimensions. An example
is to classify Stimulus A into Category 1 and Stimulus D
into Category 2.

In situations involving moderately discriminable stim-
uli and relatively inexperienced participants, a well-
known pattern of results emerges in these tasks (see Gar-
ner, 1974, 1976, for reviews). Consider first the case of
highly separable-dimension stimuli. Such stimuli are ones
in which the dimensions remain psychologically distinct
when in combination, such as forms varying in their shape
and color, or circles varying in their size and angle of ori-
entation of a radial line. Here, to a first approximation,
mean RTs are basically identical across the control, filter-
ing, and correlated tasks.

A much different pattern emerges for stimuli varying
along integral dimensions, however. Integral-dimension
stimuli are ones in which the dimensions combine into rel-
atively unanalyzable, integral wholes. Examples are col-
ors varying in brightness and saturation, or tones varying
in pitch and loudness. For integral-dimension stimuli,
there is interference in the filtering task and facilitation in
the correlated task. That is, for integral-dimension stim-
uli, mean RTs in the filtering task are markedly slower than
in the corresponding control tasks, whereas mean RTs in
the correlated tasks are markedly faster than in the con-
trol tasks.

We emphasize that the preceding summary is intended
as an approximation to the detailed pattern of results ob-
tained in these tasks. For example, in situations involving
highly confusable stimuli and extended training, facili-
tation effects are sometimes observed in the correlated
task even for separable-dimension stimuli (e.g., Garner
& Felfoldy, 1970; Maddox & Ashby, 1996). Likewise, be-
cause the distinction between integral- versus separable-
dimension stimuli exists on a continuum, it may not be
possible to observe a pure case of either type of dimen-
sional interaction. Thus, it would not be surprising to see
some small amounts of interference observed in the fil-
tering task for stimuli that are traditionally viewed as
being composed of separable dimensions. The main point
is that, relative to separable-dimension stimuli, integral-
dimension stimuli show far more interference in the fil-
tering task and far more facilitation in the correlated
task.

The performance patterns observed in these speeded
classification tasks are among the fundamental converg-
ing operations used by Garner (1974, 1976) for distin-
guishing among alternative dimensional interactions. In-
tuitively, optimal performance in the filtering task could
be achieved if the observer attends to only the relevant
dimension and ignores the irrelevant one. (A deeper the-

Figure 2. Schematic illustration of the stimulus configuration
used in Garner’s speeded classification tasks.
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oretical basis for this intuition is provided in the section
in which we consider the predictions of the formal mod-
els.) For highly separable-dimension stimuli, this goal of
attending selectively to only the relevant dimension is eas-
ily accomplished. However, the selective attention pro-
cess is far less efficient in the case of integral-dimension
stimuli, so variation along the irrelevant dimension hin-
ders performance in the filtering task when integral-
dimension stimuli are used.

APPLYING THE MODELS TO THE
SPEEDED CLASSIFICATION TASKS

In this section, we discuss in a general conceptual fash-
ion whether or not the EBRW model and the DBM can ac-
count for the main performance patterns observed in the
control, filtering, and correlated tasks. The issues that are
highlighted are then examined in more rigorous, quanti-
tative fashion in the model-fitting section of the article.

Applying the EBRW Model
In discussing the predictions of the EBRW model, we

assume for simplicity that the exemplars are positioned
in multidimensional psychological space as illustrated in
Figure 2. We emphasize, however, that, as in all past ap-
plications of the exemplar model, a complete account of
performance requires assumptions about the locations of
the exemplars in psychological space, which may not
correspond precisely to the physical space defined by the
experimenter (Nosofsky, 1992).

According to the EBRW model, when highly separable-
dimension stimuli are used, participants attend selec-
tively to the single dimension that they are instructed is
relevant for solving the task. In the extreme situation in
which all attention weight is placed on this single di-
mension (see Equation 1), the structures of the control,
filtering, and correlated tasks are all identical to one an-
other. Consider, for example, a situation in which the
stimuli vary in shape (triangle vs. circle) and color (red
vs. blue). Suppose that, in the control and filtering tasks,
the relevant dimension is shape. Thus, in one of the con-
trol tasks, the observer classifies the red triangle into Cat-
egory 1 and the red circle into Category 2. In the filter-
ing task, the observer classifies the red and blue triangles
into Category 1 and the red and blue circles into Cate-
gory 2. From the perspective of the experimenter, there
are two stimuli being classified in the control task and four
stimuli being classified in the filtering task. However, in
the extreme situation in which all attention is placed on
only the shape dimension, then, from the perspective of
the observer, there are only two stimuli in both tasks—
namely, a triangle and a circle. The same holds true in the
correlated task in the extreme situation in which all at-
tention is placed on the single dimension of shape. Because
the structures of the control, filtering, and correlated tasks
are identical in this situation, it is evident that the EBRW
model predicts identical performance in each task.3

Why, according to the EBRW model, is there facilita-
tion in the correlated task when integral-dimension stim-

uli are used? Note that the stimuli in the correlated task
(e.g., A and D) are less similar than are the stimuli in the
control task (e.g., A and B; see Figure 2). According to
the EBRW model, the greater discriminability of the
stimuli in the correlated task causes less competition in
the random-walk process. For example, when Stimulus A
is presented, it will rarely cause exemplars of the highly
dissimilar Stimulus D to be retrieved. Thus, the random-
walk counter will move in consistent fashion to its ap-
propriate response criterion. The counter wanders back
and forth to a greater extent in the control task, because
of the higher similarity of the exemplars from contrast-
ing categories.

Why is there interference in the filtering task? One rea-
son, according to the EBRW model, is that, for any given
item that is presented, there are twice as many exemplars
in memory that are identical to that item in the control
task as there are in the filtering task (e.g., in the control
task, Stimulus A is presented on half the trials, whereas
in the filtering task, it is presented on one fourth of the
trials). A test item is most likely to retrieve exemplars to
which it is identical. As explained previously, the greater
the number of these exemplars in memory, the faster the
winning retrieval times tend to be; thus, the random walk
finishes more quickly.

This line of reasoning about the basis for interference
in the filtering task assumes equal memory strengths for
all exemplars. A more plausible assumption is that mem-
ories for previous exemplars get weaker each time a sub-
sequent test item is presented. Introducing this assump-
tion, however, yields the same interference predictions.
In the control task, an exemplar that is identical to the
test item will be presented on half of the immediately
preceding trials; however, in the filtering task, an identi-
cal exemplar is presented on only one fourth of the im-
mediately preceding trials. Because the activation rates
with which exemplars race are influenced by their mem-
ory strengths (Equation 3), the retrieval of identical ex-
emplars is more rapid in the control task than in the fil-
tering task.

Applying the DBM
A simplified GRT representation for the four stimuli

in the Garner tasks is shown in Figure 3a. As illustrated
in the figure, each stimulus gives rise to a bivariate nor-
mal distribution. The distributions are represented sche-
matically by “contours of equal likelihood”—namely, sets
of points that are equally likely to be produced by the dis-
tribution (Ashby & Gott, 1988). The center of each con-
tour gives the mean of the bivariate normal distribution.
The expanse of the contour along each dimension repre-
sents the variability of the distribution along that dimen-
sion. For simplicity in this discussion, we assume equal
variances along both dimensions, zero correlation be-
tween dimensions, and that the variances are identical for
all stimuli within a given task. Also, stimuli with identi-
cal physical values on a given dimension are assumed to
have the same mean on that dimension in the perceptual
representation. Although some of the simplifying assump-
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tions could be relaxed, this GRT representation is the
type expected for stimuli varying along highly separable
dimensions (see Ashby & Townsend, 1986, for a more
detailed discussion).

In a control or filtering task in which Dimension 1 is
relevant, we assume that the decision bound would be as
illustrated in Figure 3a—namely, a linear boundary orthog-
onal to Dimension 1. Ashby and Maddox (1994, pp. 443–
444) suggested that, regardless of the types of stimulus
dimensions, it was plausible that a naive observer (such
as the participants in our study) would use this type of
boundary. If naive observers also use this orthogonal lin-
ear boundary in the correlated task, then the DBM ac-
counts in straightforward fashion for the canonical pat-
tern of results observed for separable-dimension stimuli.
In particular, the distribution of distances of percepts
from the decision bound is identical across the control,
filtering, and correlated tasks; therefore, the predicted
mean RTs would be identical.

Why, according to the DBM, is there facilitation in the
correlated task when integral-dimension stimuli are used?
A likely reason is that, in such situations, participants
adopt a more optimal linear boundary—namely, a diago-
nal boundary that takes advantage of both dimensions of
variation in the correlated task. Such a boundary is il-

lustrated in Figure 3b. As can be seen, percepts tend to
be further from this boundary in the correlated task than
from the orthogonal linear boundary used in the control
task; therefore, facilitation is observed. Indeed, Maddox
and Ashby (1996) provided evidence that highly experi-
enced observers learn to use such a diagonal linear bound-
ary even when rapidly classifying separable-dimension
stimuli.

Although Ashby and Maddox (1994) did not propose
an explicit model, they discussed two main ideas regard-
ing why interference might be observed in the filtering
task when integral-dimension stimuli are used. First, be-
cause the filtering task has four stimuli, whereas the con-
trol task has only two, stimulus uncertainty effects may
play a role (Ashby & Maddox, 1994, p. 427). Ashby and
Maddox (1994, p. 452) proposed to model stimulus un-
certainty effects in terms of increased variances of the
perceptual distributions associated with each stimulus (cf.
Durlach & Braida, 1969; Luce, Green, & Weber, 1976;
Marley & Cook, 1984). As illustrated in Figure 3c, with
this increase in variance, more percepts would lie close
to the decision bound in the filtering task than in the con-
trol task. Although this increase in variance would also
result in an increased number of percepts being located
farther from the bound in the filtering task than in the con-

Figure 3. Panel a: Simplified general recognition theory (GRT) representation
of the stimulus configuration in the Garner tasks when separable-dimension
stimuli are used. Panel b: GRT representation for the correlated task when a
diagonal decision boundary is used. Panel c: GRT representation with increased
variances due to uncertainty effects. Panel d: GRT representation illustrating
a mean-shift integrality.
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trol task (compare Figures 3a and 3c), the nonlinear func-
tion relating RT to distance (Equation 6) can result in a
slower overall mean RT when averaging over all percepts.

Taken by itself, however, this increased variance as-
sumption makes a strong prediction: Simply put, the very
fastest RTs in the filtering task should be faster than the
very fastest RTs in the control task. This strong prediction
is one of the reasons why it is critical, when evaluating
the models, to require them to fit the entire set of RT dis-
tributions, instead of simply the means.

A second idea is that interference in the filtering task
may result from what Ashby and Maddox (1994, pp. 432,
444) term a mean-shift integrality. This idea is illustrated
in Figure 3d. According to the hypothesis, although the
stimuli vary orthogonally on Dimensions 1 and 2 in the
physical space, they occupy the vertices of a parallelo-
gram in the underlying psychological space. The deci-
sion boundaries that would presumably be used in the
control tasks are illustrated by the dotted lines, and the
decision boundary in the filtering task is illustrated by
the dashed line. Given appropriate parameter settings,
this model can predict interference in the filtering task
(see Ashby & Maddox, 1994, pp. 448–449). The intuition
is that Stimuli B and C, which lie very close to the bound-
ary in the filtering task, result in very long RTs. Although
Stimuli A and D are far from the bound, the nonlinear
function relating RT to distance can again result in a slower
overall mean RT in the filtering task than in the control
tasks after averaging over all stimuli.

The hypothesis of mean-shift integrality draws support
from previous work concerned with the classification of
integral-dimension stimuli. For example, Melara and
Marks (1990) conducted Garner tasks in which the stim-
uli were tones that varied in pitch (low, high) and loud-
ness (soft, loud). In the correlated tasks, they found that
the A–D discrimination (low–soft vs. high–loud) was per-
formed more rapidly than the B–C discrimination (high–
soft vs. low–loud)—a result that they attributed to an ef-
fect of dimensional congruity. The mean-shift integrality
illustrated in Figure 3d is consistent with such a pattern
of results. Likewise, Kingston and Macmillan (1995)
conducted Garner tasks in which the stimuli were vowel
sounds varying along dimensions of nasalization and first-
formant frequency. Although the dependent measure in
their study was accuracy, not RT, Kingston and Macmillan
observed strong interactions between these perceptual
dimensions analogous to the effects obtained by Melara
and Marks (1990). They modeled these perceptual inter-
actions in terms of a mean-shift integrality representa-
tion, such as the one shown in Figure 3d.

We do not question the critical importance of mean-
shift integrality in providing a full account of speeded
perceptual classification. Nevertheless, in combination
with the RT–distance hypothesis, the mean-shift inte-
grality hypothesis makes a strong prediction in the present
context: As can be seen from Figure 3d, one of the diago-
nal pairs in the filtering task, either Pair A–D or Pair B–C,
should have faster mean RTs than the pairs tested in the
control tasks, A–B and C–D (which pair depends on the

precise shape of the parallelogram). If there is some com-
bination of mean-shift integrality and increased variance
due to uncertainty effects, the DBM is not forced into this
prediction. However, even this more complicated hypoth-
esis predicts that the fastest RTs for one of the diagonal
pairs in the filtering task should be faster than those in
the control tasks. Thus, it is again critical to examine the
RT distributions for individual stimuli across the tasks
to evaluate the merits of these hypotheses.

EXPERIMENT

The data that are analyzed and modeled in this article
were obtained in an experiment reported previously by
Nosofsky and Palmeri (1997). In this previous study, we
demonstrated that the EBRW model was consistent with
the global pattern of results obtained across the control,
correlated, and filtering tasks. However, only the mean
RTs and accuracies across tasks were reported and ana-
lyzed. By contrast, in the present study, we have the goal
of modeling the complete structure of the RT distribu-
tions and accuracies observed for each of the individual
stimuli across the tasks; therefore, the aims are far more
ambitious.

To obtain a data set suitable for quantitative fitting,
Nosofsky and Palmeri (1997) conducted a battery of the
Garner speeded classification tasks under the umbrella
of a single experiment. Whereas Maddox and Ashby
(1996) had tested a few individual participants for ex-
tended periods of time in speeded classification tasks in-
volving separable-dimension stimuli, we decided to test
multiple participants in a single session in tasks involv-
ing integral-dimension stimuli. The main reason we de-
cided to focus on integral-dimension stimuli is that the
patterns of RT results appear to provide a greater chal-
lenge to the models. For example, there is very little vari-
ability in performance across the control and filtering
tasks when separable-dimension stimuli are used. In gen-
eral, it seems less challenging for a model to fit identical
patterns of performance across these tasks than to fit large
variations in performance. Indeed, in the previous sec-
tion, we already pointed out reasons to believe that the
DBM might have difficulty accounting for large perfor-
mance variations across the control and filtering tasks.

The issue of testing individual participants over ex-
tended periods of time, as opposed to testing multiple par-
ticipants in a single experimental session, is a complex
matter. Both research approaches have their advantages
and disadvantages. A disadvantage of testing multiple par-
ticipants and modeling group data is that, if the param-
eters for individual participants vary substantially, then
the group data are likely to obscure patterns at the indi-
vidual participant level. Unfortunately, however, the fun-
damental patterns of RT results systematized by Garner
in his classic work were obtained in testing conditions
with relatively inexperienced participants. Testing a sin-
gle participant over an extended period of time may well
produce changes in psychological processes that are not
representative of the novice observer.
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For example, our theoretical analyses involving the
DBM assume that the observer adopts an orthogonal lin-
ear boundary in the control and filtering tasks (see Fig-
ure 3d). As argued by Ashby and Maddox (1994), this
assumption seems highly plausible in the case of rela-
tively inexperienced observers, because the single linear
boundary is presumably easy to implement and the par-
ticipants are given explicit instructions to classify on the
basis of a single dimension. But, with extensive training,
these participants may learn to adopt much more com-
plex decision boundaries (e.g., curvilinear boundaries
that come closer to optimizing performance than do linear
bounds). Because an infinite variety of decision bounds
are possible, one’s ability to test the DBM depends on
conducting experimental conditions that yield plausible
constraints on the form of the bound. Therefore, we felt
it was important to initiate the investigation by testing rel-
atively inexperienced participants where the orthogonal
linear-bound hypothesis was reasonable.

Likewise, from the perspective of the EBRW model, it
may be that, with extensive training, an observer can be-
come highly efficient at selectively attending even to
integral-dimension stimuli. Thus, the fundamental inter-
ference effect might be greatly diminished, thereby re-
moving the challenge posed to the competing models.
Although studies that examine the effects of extensive
training on performance in the Garner tasks are of a great
deal of interest, we chose to first investigate performance
under more standard testing conditions.

Because any single observer contributes limited data
in the course of a single session, in this article, we adopted
the procedure known as vincentizing for creating group
RT distributions (Ratcliff, 1979). Briefly, in this proce-
dure, each observer’s RT data are divided into quantiles.
The mean RTs in each quantile are then averaged across
observers to create the group distribution. Ratcliff illus-
trated with various examples that, if the individual RT
distributions have the same basic “shape,” then the group
distribution created by the method of vincentizing also
has this shape. Thus, if behavior at the individual partici-
pant level is fairly homogeneous, then the group RT dis-
tribution should be representative of the patterns of per-
formance observed at the individual participant level.

Because the experimental method has been described
in depth in the article by Nosofsky and Palmeri (1997),
we only briefly review it here.

Method
Subjects. The subjects were 26 graduate and undergraduate stu-

dents associated with the Indiana University Psychology Department.
Stimuli and Apparatus. The stimuli were tones varying in pitch

(frequency) and loudness (intensity). Previous work indicates that
such stimuli have integral-dimension characteristics (Grau & Kem-
ler Nelson, 1988; Melara & Marks, 1990). The stimulus set was con-
structed by combining orthogonally frequency values of 900 and
950 Hz, with intensity values of 60 and 70 dB. Thus, the physical
values corresponding to Stimuli A–D in Figure 2 were A � (900, 60),
B � (950, 60), C � (900, 70), and D � (950, 70). Previous work re-
ported by Melara and Marks (1990) and Melara and Mounts (1994)
indicated that the pitch and loudness differences used are roughly
equally discriminable.

Procedure. The experiment was organized into 13 conditions as
shown in Table 1. However, only the first 8 conditions listed in Table 1
are analyzed and modeled in the present article. The stimuli that
were eligible for presentation in each condition, as well as their di-
vision into categories, are reported in Column 2 of the table. The or-
dering of conditions was balanced according to two Latin squares.
Each condition consisted of 96 trials, with each eligible stimulus pre-
sented with equal frequency. Ordering of stimulus presentations
was randomized for each individual participant and condition.

Results
The experimental conditions of interest in the present

article are the first 8 listed in Table 1. There are two
control–pitch conditions (A vs. B, and C vs. D), two
control–loudness conditions (A vs. C, and B vs. D),
two correlated conditions (A vs. D, and B vs. C), a filter–
pitch condition (A,C vs. B,D), and a filter–loudness con-
dition (A,B vs. C,D). Note that there is a total of 20 con-
dition � stimulus combinations involved across these
tasks (i.e., two stimuli for each of the four control and
two correlated tasks, and four stimuli for each of the two
filtering tasks). Our theoretical goal was to simulta-
neously model the RT distributions and accuracies asso-
ciated with all 20 combinations. The first 24 trials of
each condition were considered practice. Only the final
72 trials of each condition were included in the analyses
and the modeling.

Preliminary data transformation. We took two pre-
liminary steps before creating the group vincentized dis-
tributions. First, the RT data for each individual participant
in each individual condition were examined. RTs greater
than 3 standard deviations above the mean for each indi-
vidual data set were eliminated, as were RTs less than
100 msec. This procedure led to the removal of less than
0.1% of the total observations.

Second, to create a more nearly homogeneous data set
appropriate for vincentizing, we attempted to remove the
influence of task-order position on the RT data. Presum-
ably, as participants gain increased experience in these
speeded classification tasks, overall performance improves,
such that tasks tested early in the sequence will tend to

Table 1
Experimental Design and Mean Correct Response Times

(in Milliseconds) and Error Rates in Each Condition

Task Stimuli MRT P(E)

Control–Pitch 1 A vs. B 397.8 .037
Control–Pitch 2 C vs. D 387.0 .027
Control–Loudness 1 A vs. C 421.5 .036
Control–Loudness 2 B vs. D 415.7 .032
Correlated 1 A vs. D 367.5 .016
Correlated 2 B vs. C 371.0 .023
Filter–Pitch A,C vs. B,D 439.1 .043
Filter–Loudness A,B vs. C,D 447.2 .047
Stretch–Pitch A,G vs. B,H — —
Stretch–Loudness A,E vs. C,F — —
Condensation A,D vs. B,C — —
Focus (25%) A vs. B,C,D — —
Focus (50%) A vs. B,C,D — —

Note—MRT � mean response time; P(E) � proportion of errors. Stim-
uli G and H in the stretch–pitch condition had frequency values of
1000 Hz. Stimuli E and F in the stretch–loudness condition had inten-
sity values of 80 dB.
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have slower and more variable RTs than will tasks tested
late. Figure 4 plots the means and standard deviations of
all RTs in the eight tasks as a function of position of test-
ing. To estimate the influence of task position on the RTs,
we fitted to each plot a power function that minimized
the sum of squared deviations between predicted and ob-
served data points. We used power functions because of
their flexibility and previous suggestions in the literature
that they provide good descriptions of the decreases in
RT with practice (e.g., Logan, 1992; Newell & Rosen-
bloom, 1981). These fitted power functions are illus-
trated along with the observed data in Figure 4. For the
mean RTs, the best-fitting power function was y � 217.8
+ 238.7 � x�0.12 ; for the standard deviations, the best-fit-
ting function was y � 131.8 + 57.7 � x�2.11.

We then used a two-step standardization procedure to
remove the estimated effect of task position on the RTs.
(Nobel, 1996, used a similar transformation procedure
to remove effects of extraneous variables in creating RT
distributions in a series of memory experiments.) Let
PM (i ) denote the mean RT predicted by the power func-
tion for position i, and let GM denote the grand mean of
these mean RTs across the 13 positions of testing. In the
first step, all RT data in position i (Xi ) were standardized
by using the transformation

X i′ � Xi + [GM � PM (i )]. (7a)

This transformation removes the estimated effect of
task position on the mean RTs. Likewise, let PS (i ) denote
the standard deviation of RTs predicted by the power
function for position i, and let GS denote the grand mean
of these standard deviations. In the second step, all of the

mean-standardized data in position i, X i′, were further
standardized by using the transformation

Xi″ � [GS /PS (i)] � [X i′�GM] + GM . (7b)

This transformation removes the estimated effect of task
position on the standard deviations of the RTs, while leav-
ing the means unchanged. To the extent that the power-
function estimates are exact, the net effect of these trans-
formations is to produce RT distributions with the same
mean and standard deviation across task position. We be-
lieve that this standardization procedure is sensible given
our goal of creating group RT distributions suitable for
quantitative testing of the models. We emphasize, however,
that when we model the group RT distributions obtained
from the raw data without the standardization procedure,
the same patterns of results are obtained, and none of our
conclusions are changed.

Mean RTs and accuracies across tasks. Before pre-
senting the analysis of the individual stimulus RT distri-
butions, we briefly characterize the global patterns of re-
sults observed across the tasks. The mean correct RTs and
accuracies for each of the eight tasks are presented in
Table 1. The main results replicate the classic patterns for
integral-dimension stimuli. Mean RT was significantly
slower in the filtering tasks than in the control tasks, in-
dicating interference [pitch, t(25) � 3.86, p < .001; loud-
ness, t(25) � 2.81, p < .01]. Mean RT in the correlated
tasks was significantly faster than in either type of con-
trol task, indicating facilitation [pitch, t(25) � 6.29, p <
.001; loudness, t(25) � 5.63, p < .001]. Mean RTs for dis-
criminating pitch were somewhat faster than for discrim-
inating loudness [control, t(25) � 2.90, p < .01; filtering,

Figure 4. Mean RTs (MRTs) and standard deviations of RTs (Stdevs) plotted as
a function of task position. The power functions that best fit these curves are also
illustrated.
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t(25) � 0.38, p > .05]. Thus, in the ensuing modeling
analyses, we expect the psychological representation for
the stimuli to be slightly elongated along the pitch di-
mension. In addition, the probability of errors across the
eight tasks mirrors the pattern for the mean RTs; therefore,
the main qualitative findings do not appear to be attrib-
utable to a speed–accuracy tradeoff.

These main patterns of results appear to be reasonably
homogeneous at the individual-participant level. For ex-
ample, all 26 participants had faster mean RTs in the cor-
related tasks than in the control tasks, and 23 of the 26
participants had slower mean RTs in the filtering tasks
than in the control tasks. In subsequent analyses, we re-
port an important result that mean RTs and error rates
were lower for the A–D stimulus pair than for the B–C
stimulus pair in the filtering and correlated tasks (see MRT
column of Table 2). Even at this more fine-grained level
of analysis, the patterns are reasonably homogeneous at
the individual-participant level. Of the 26 observers, 21
had faster mean RTs on the A–D pair than on the B–C
pair, averaged across tasks. The key question now is the
extent to which the alternative models can account quan-
titatively for the detailed performance patterns that un-
derlie these main findings.

Vincentized RT distributions. We created group RT
distributions for each individual stimulus in each task by
the method of vincentizing (see Ratcliff, 1979, pp. 448–
449, for a detailed illustration of the procedure). Specif-
ically, taking each stimulus in each task separately, we
divided each participant’s RT data into deciles (i.e., bins
containing 10% of the RT observations). Only correct re-
sponses were included in forming these deciles. The mean
RT in each decile was computed. The group RT distri-
bution for each stimulus in each task was then constructed

by averaging these decile means across the 26 participants.
The 20 resulting group RT distributions are reported in
Table 2. In addition, the table presents the overall mean
RTs and error probabilities for each of the individual stim-
uli across the tasks. These data form the bedrock for most
of the ensuing modeling and statistical analyses reported
in this article.

Conceptually, each individual bin mean in each vin-
centized distribution summarizes an interval containing
10% of the RT observations. We adopt the following
conventions in modeling and displaying these distribu-
tions. First, the cutoff for each interval of RTs is assumed
to be located midway between the means of adjacent in-
tervals. For example, in Distribution 1 in the control–pitch
task (CP-A), the means for the first three deciles are
295.5, 324.4, and 343.8. Thus, the lower cutoff for Inter-
val 2 is 310.0, and the upper cutoff is 334.1. For purposes
of displaying the data, the width (W) of each interval is
then given by the distance between the lower and upper
cutoffs.4 Because each interval contains 10% of the obser-
vations, the height (H) of each interval is then defined as
H � 0.1/W.

To gain insight into the overall structure of the RT dis-
tribution data, we computed global distributions corre-
sponding to the control, correlated, and filtering tasks.
Each global distribution was computed by averaging over
the vincentized values corresponding to tasks of a given
type. For example, the global control distribution was
computed by averaging over Distributions 1–8 in Table 2.
The structures of the resulting global distributions are il-
lustrated in Figure 5a. As expected, the figure illustrates
that RTs are fastest in the correlated tasks, intermediate
in the control tasks, and slowest in the filtering tasks. The
distributions are not simply shifted along the RT axis, how-

Table 2
Vincentized RT Distributions Associated with Each Individual Stimulus in Each Task,

Together with the Mean RTs (in Milliseconds) and Proportions of Errors

Decile

Task 1 2 3 4 5 6 7 8 9 10 MRT P(E)

CP-A 295.5 324.4 343.8 361.9 378.8 395.9 414.9 439.3 478.3 568.5 400.0 .029
CP-B 293.1 323.7 342.4 359.4 374.9 391.9 410.8 432.5 470.9 555.3 395.6 .044
CP-C 288.6 315.8 336.0 352.8 368.5 384.6 401.0 420.3 461.6 542.2 386.6 .020
CP-D 289.8 317.1 335.5 352.0 367.6 385.6 403.1 423.9 461.5 536.9 387.3 .035
CL-A 309.0 341.6 361.3 379.8 397.3 413.7 438.7 466.1 521.4 624.4 425.0 .047
CL-C 304.7 329.9 347.4 366.2 386.0 407.7 431.7 464.6 517.1 628.9 417.9 .026
CL-B 314.0 343.3 363.7 382.6 400.4 418.0 441.2 472.3 510.1 614.0 425.4 .038
CL-D 299.0 326.1 347.7 365.5 382.8 403.7 422.0 447.9 485.7 580.7 405.9 .026
Cr-A 280.7 311.1 327.8 342.2 358.1 371.2 386.5 402.6 432.3 506.8 371.3 .020
Cr-D 264.2 294.5 315.8 331.4 346.0 358.9 374.0 395.4 437.7 517.8 363.6 .012
Cr-B 281.0 307.4 324.9 338.5 353.2 369.0 388.1 409.3 443.8 529.8 374.6 .030
Cr-C 272.8 301.3 320.3 338.5 353.1 367.8 384.8 402.4 430.5 504.2 367.3 .015
FP-A 317.3 341.9 361.6 378.4 392.2 413.8 445.5 483.8 541.0 662.9 433.7 .026
FP-B 324.3 353.5 375.9 394.9 419.7 447.2 475.7 506.0 553.2 670.2 452.4 .077
FP-C 313.5 347.5 373.9 395.4 414.0 437.5 462.4 495.9 550.3 681.4 447.7 .057
FP-D 310.1 338.3 357.9 373.3 391.3 411.3 436.9 467.6 524.6 622.4 422.4 .011
FL-A 321.9 350.8 369.1 387.7 406.4 428.9 454.1 487.0 544.0 651.9 440.6 .039
FL-B 329.1 362.1 380.9 396.4 417.9 439.0 464.9 499.5 560.5 659.9 450.8 .053
FL-C 326.5 352.6 374.6 395.6 413.8 444.0 478.4 520.2 577.4 682.9 457.3 .072
FL-D 314.0 338.6 357.8 377.9 405.0 426.5 450.6 500.1 560.0 665.1 440.0 .022

Note—Letters to the left of each hyphen denote the type of task, and the letter to the right denotes the individual stimulus.
CP � control–pitch; CL � control–loudness; Cr � correlated; FP � filter–pitch; FL � filter–loudness. MRT denotes mean
response time, and P(E) denotes probability of error.
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ever. Rather, they have different shapes. Although all three
distributions are positively skewed, the distribution for
the correlated task rises rapidly to a high peak and is rel-
atively narrow, whereas the filtering distribution is much
flatter and has a long right tail. The control distribution
is intermediate between these extremes. The figure also
indicates that the fastest filtering RTs are slower than the
fastest control RTs, suggesting that some of the strong pre-
dictions that we discussed previously for the DBM may
not be confirmed. However, more rigorous examination
of this issue requires modeling the individual RT distri-
butions corresponding to each stimulus rather than the
global distributions. We turn, therefore, to the modeling
section of the article.

THEORETICAL ANALYSIS

EBRW Free Parameters
The version of the EBRW model fitted to the RT data

had the following free parameters. First, to calculate dis-

tances and similarities, each stimulus was represented by
two coordinate parameters—namely, a value along Di-
mension 1 and a value along Dimension 2. Because dis-
tances between stimuli are invariant under horizontal and
vertical translations of the space, the coordinates for
Stimulus A could be held fixed at (0,0) without loss of
generality. Thus, there were six free coordinate param-
eters. Note also that because the stimulus coordinates
were free parameters, the value of the scaling factor (c)
in Equation 2 could be held fixed at 1.0 without loss of
generality. We also estimated a single attention-weight
parameter (watt ) used in the distance function (Equa-
tion 1). In tasks in which Dimension 1 was relevant, we
set w1 � watt (with w2 � 1�watt ), and vice versa for tasks
in which Dimension 2 was relevant. In the correlated tasks,
in which both dimensions were relevant, we assumed
w1 � w2 � .50, although this latter assumption has little
influence on the overall fit of the model. A final free pa-
rameter involved in the calculation of similarities was the
value of γ in the distance function. Because the dimen-
sions of pitch and loudness seem to lie intermediate
along the integrality–separability continuum, we expected
the best-fitting value of γ to lie intermediate between the
canonical values of 1 and 2 (see Tversky & Gati, 1982,
pp. 135–136, for previous evidence along these lines in
experiments involving color stimuli).

For simplicity, the memory strengths for all stimuli
were set at 1.0. More psychologically realistic versions
of the EBRW model would be obtained by introducing
assumptions about memory decay into the modeling;
however, to reduce the number of free parameters, we de-
cided to first pursue this simpler version.

The parameters involved in the random-walk process
included the following. First, we defined an integer-val-
ued criterion parameter (crit) representing the amount of
evidence needed for executing a response. Because of the
symmetry of the category structures, we assumed unbi-
ased responding, so that A � B � crit (see Figure 1). An-
other free parameter was the constant (α) in the step-time
function (Equation 5). Also, because the RT predictions
of the EBRW model are in arbitrary units, a scaling con-
stant (k) was needed for transforming these units into
milliseconds. Finally, we needed to estimate the mean
(µR ) and standard deviation (σR ) of the duration of the
residual processing stages.

In summary, the version of the EBRW tested here has
13 free parameters: 6 free coordinate parameters (the
values of xim in Equation 1), the value of γ in Equation 1,
the attention weight given to relevant dimensions (watt) in
Equation 1, the value of α in the step-time function, the
criterion parameter crit, the scaling constant k, and the
residual parameters µR and σR .

DBM Free Parameters
Like the EBRW model, the DBM used 6 free coordi-

nate parameters representing the means of each bivariate
normal distribution [with the mean for Stimulus A held
fixed at (0,0)]. We also defined free parameters repre-

Figure 5. Panel a: Global RT distributions observed for the
control, correlated, and filtering tasks. Panel b: Global distribu-
tions predicted by the EBRW model. Panel c: Global distribu-
tions predicted by the DBM.
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senting the standard deviations along Dimensions 1 and
2 (s1 and s2, respectively), and the correlation between
Dimensions 1 and 2 (ρ). All stimuli were assumed to
have common values of the standard deviation and cor-
relation parameters, however. To account for potential
stimulus uncertainty effects in the filtering conditions,
the standard deviations along both dimensions were mul-
tiplied by a free parameter, κ, in these conditions. (When
κ � 1, there are no uncertainty effects, and the standard
deviations are identical across conditions.) Other free
parameters included the distance-from-bound rate param-
eter (β ) in Equation 6, the scaling constant (k) for trans-
forming the predictions of decision time into millisec-
onds (Equation 6), and the residual-stage parameters µR
and σR . This model makes use of 13 free parameters. (Be-
cause the stimulus means and standard deviations are
free parameters, the β parameter can be held fixed at 1.0
without loss of generality.)

As explained previously, we assumed that the partici-
pants adopted orthogonal linear boundaries in the con-
trol and filtering conditions. Because of the symmetric
category structures, we assumed an unbiased placement
of the decision bound (analogous to our assumption of
unbiased response criteria in the EBRW model). Thus,
the bound was located midway between the means of the
stimuli from contrasting categories in each condition.
(Of course, in the conditions in which Dimension 1 was
relevant, the bound was orthogonal to Dimension 1, so
only the Dimension 1 means were relevant to the calcu-
lation of the bound; whereas, in the conditions in which
Dimension 2 was relevant, only the Dimension 2 means
were used.) In the correlated conditions, we assumed that
the participants adopted a diagonal linear bound, as il-
lustrated previously in Figure 3b. For simplicity, and to
reduce the number of free parameters, we assumed specif-
ically that the participants used a “minimum-distance
bound” to classify the stimuli (Ashby & Gott, 1988). Such
a boundary is a straight line located midway along, and
perpendicular to, the chord connecting the means of the
stimuli from the contrasting categories. In a subsequent
analysis, we consider an extended version of the model
that allows more flexible linear boundaries but find that
it leads to minimal improvements in overall fit.

In sum, note that the baseline versions of the EBRW
model and the DBM tested here used the same number
of free parameters. We aimed for an equal number of pa-
rameters in the hope of achieving fair comparisons be-
tween the models.

Model-Fitting Method
The models were fitted to the data by searching for the

free parameters that minimized the sum of squared devi-
ations (SSD) between predicted and observed data val-
ues. The total SSD was a weighted sum of two component
SSDs, one corresponding to the RT data and the other
corresponding to the accuracy data. The RT SSD was
computed as follows. Given the parameters in the model,
we calculated the proportion pi of observations predicted

to lie in each RT bin for each stimulus in each task. Given
the nature of our vincentizing procedure, the observed
proportion of RTs in each bin is equal to .10. Thus, the
overall RT SSD [SSD(RT)] is given by

SSD(RT) � ∑ ( pi � .10)2,

where the sum is over all 10 bins in each of the 20 indi-
vidual stimulus distributions (a total of 200 data points,
with 180 degrees of freedom). The accuracy SSD [SSD(A)]
was defined as the sum of squared deviations between
predicted and observed proportions of errors in each of
the eight tasks, averaged over stimuli. The total SSD
[SSD(T)] was then defined as SSD(T) � SSD(RT) +
25 � SSD(A). Any method for combining SSD(RT) and
SSD(A) into an overall fit is arbitrary—we weighted the
accuracy SSD by 25 because SSD(RT) was composed of
200 squared deviations, whereas SSD(A) was composed
of only 8 squared deviations.5

The parameter-search program that was used incorpo-
rates a heuristic search procedure that alternates between
making trial-and-error adjustments of individual param-
eters and pattern adjustments in the entire set of param-
eters. A variety of initial configurations were used in an
effort to avoid local minima. Although minimizing SSD
is not a maximum-likelihood procedure, note that be-
cause all observed data cells in the vincentized RT distri-
butions are equal to .10, they have the same error variance
for the SSD (RT). Thus, minimizing SSD seemed to be
a reasonable criterion of fit.

Nosofsky and Palmeri (1997) derived analytic predic-
tions from the EBRW model for the mean classification
RTs and accuracies given any stimulus at a particular
stage of learning. Because we have been unable to derive
such analytic predictions for the RT distributions, how-
ever, we fit these data by means of computer simulation.
The simulations were based on the construction of 10,000
random stimulus sequences satisfying the constraints of
our experimental design. Each sequence consisted of 96
stimulus presentations, with all eligible stimuli occurring
with equal frequency. For each stimulus, the random-
walk process and residual times were simulated, and the
resulting category choice and RT were recorded. We then
computed the proportion of RTs occurring in each vin-
centized bin, using the cutoff procedure described previ-
ously (and where the lowest and highest bins were un-
bounded). As was the case in computing the observed data,
only the final 72 trials of each sequence were used to gen-
erate the predictions, and only those RTs associated with
correct categorization choices were included. Although
analytic prediction methods are available for the DBM,
for purposes of direct comparability with the EBRW
model, as well as certain individual-participant analyses
that we describe later, we used the same simulation meth-
ods for that model. Because the RT and accuracy predic-
tions were virtually identical when alternative initial ran-
dom seeds were used across runs of the models, we are
confident that the number of simulations is sufficient for
our model-fitting goals.
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Model-Fitting Results
The predicted probabilities of RTs in each bin, as well

as the predicted and observed overall accuracies in each
task, are given in Tables 3 and 4 for the EBRW model and
the DBM, respectively. (Recall that the predicted bin
probabilities should be compared with observed values of
.10 to assess the fits of each model.) The best-fitting pa-
rameters for each model are reported in Table 5. Overall,
the EBRW model yields SSD(T) � .095, with compo-
nent fits of SSD(RT) � .080 and SSD(A) � .00059. The
DBM yields SSD(T) � .109, with SSD(RT) � .099 and
SSD(A) � .00036. The overall quantitative fit of the
EBRW model is slightly better with respect to predicting
the RT distributions. Both models yield good fits to the
error probabilities, the fits of the DBM being somewhat
better than those of the EBRW model.

Figure 6 plots, for each model separately, the predicted
RT distributions against the observed RT distributions
for each individual stimulus in each task. Considering
that each model uses only 13 free parameters to predict the
200 data points (plus the accuracy data), the overall fits
to these detailed RT-distribution data strike us as fairly im-
pressive. Nevertheless, each model also suffers impor-
tant and systematic limitations, as we soon demonstrate.

To gain insight into the overall strengths and weak-
nesses of each model, we computed the global control, fil-
tering, and correlated distributions that each model pre-
dicted, and we compared these with the observed global
distributions (Figure 5a). Figures 5b and 5c plot the pre-
dicted distributions in relation to one another, as was
done for the observed global distributions in Figure 5a.
Both models appear to capture the basic shape of the RT
distributions quite well. However, Figure 5c illustrates that
the DBM fails to separate the main body of the global RT
distributions corresponding to the control and filtering

tasks. Thus, when the DBM is required to fit the detailed
structure of the RT distributions, it apparently fails to
capture the fundamental interference effect observed for
these integral-dimension stimuli. The EBRW model fares
much better in accounting for this key qualitative result,
although it somewhat underestimates the magnitude of
the interference (see Figure 5b). Both the EBRW model
and the DBM make the correct qualitative prediction of
facilitation in the correlated task and also predict nicely
the peaked shape associated with the correlated distri-
bution. However, a weakness for the EBRW model is that
it underestimates the degree of facilitation in the corre-
lated task.

To gain another view of the overall strengths and weak-
nesses of the models, Figures 7 and 8 plot together on the
same graphs the predicted and observed global RT distri-
butions. The EBRW model (Figure 7) predicts with ex-
tremely good accuracy the control distribution. It also
yields fairly good fits to the filtering distribution, although
it overpredicts the proportion of very fast RTs (i.e., the
probability of RTs in the first vincentized bin). The EBRW
model’s clearest shortcoming is with respect to the cor-
related task, however, where the predicted distribution is
shifted systematically to the right of the observed distri-
bution. It is interesting to note that the EBRW model also
underpredicts the error rate in the correlated tasks (see
Table 3a). This pattern suggests the possibility of a speed–
accuracy tradeoff at work, a point to which we return later
in this article.

As can be seen in Figure 8, the DBM predicts RTs in the
control task that are too slow, and predicts RTs in the fil-
tering task that are too fast. This combination of mispre-
dictions probably represents a compromise of the best-
fitting parameters, because the model predicts virtually
identical global distributions across the control and fil-

Table 3
EBRW Model Predictions of Vincentized Bin Probabilities and Overall Accuracies in Each Task

Decile P(E)

Task 1 2 3 4 5 6 7 8 9 10 Pre. Obs.

CP-A 0.080 0.094 0.097 0.100 0.094 0.092 0.094 0.101 0.120 0.128 .030 .037
CP-B 0.075 0.092 0.091 0.092 0.092 0.094 0.090 0.103 0.126 0.143
CP-C 0.065 0.085 0.094 0.096 0.097 0.092 0.089 0.116 0.134 0.130 .020 .027
CP-D 0.069 0.084 0.090 0.095 0.102 0.100 0.093 0.109 0.124 0.133
CL-A 0.129 0.122 0.104 0.097 0.085 0.089 0.089 0.096 0.097 0.093 .037 .036
CL-C 0.100 0.087 0.093 0.106 0.111 0.104 0.101 0.103 0.102 0.093
CL-B 0.144 0.122 0.109 0.100 0.086 0.084 0.087 0.079 0.090 0.098 .033 .032
CL-D 0.086 0.096 0.104 0.098 0.104 0.094 0.087 0.093 0.113 0.125
Cr-A 0.076 0.104 0.098 0.110 0.109 0.100 0.097 0.107 0.125 0.074 .003 .016
Cr-D 0.034 0.074 0.093 0.100 0.101 0.105 0.126 0.162 0.141 0.066
Cr-B 0.056 0.075 0.079 0.086 0.100 0.114 0.118 0.123 0.143 0.105 .010 .023
Cr-C 0.040 0.068 0.088 0.099 0.097 0.104 0.105 0.113 0.150 0.137
FP-A 0.137 0.102 0.097 0.083 0.089 0.114 0.110 0.098 0.090 0.079 .045 .043
FP-B 0.152 0.117 0.103 0.103 0.102 0.089 0.073 0.069 0.087 0.104
FP-C 0.130 0.137 0.124 0.098 0.090 0.084 0.078 0.082 0.091 0.086
FP-D 0.121 0.110 0.096 0.093 0.099 0.102 0.096 0.100 0.092 0.091
FL-A 0.155 0.110 0.095 0.093 0.094 0.088 0.085 0.090 0.092 0.098 .059 .047
FL-B 0.180 0.123 0.083 0.086 0.085 0.078 0.080 0.088 0.087 0.109
FL-C 0.148 0.105 0.104 0.090 0.098 0.104 0.091 0.080 0.078 0.103
FL-D 0.114 0.092 0.098 0.120 0.110 0.087 0.106 0.102 0.080 0.090

Note—CP � control–pitch; CL � control–loudness; Cr � correlated; FP � filter–pitch; FL � filter–loudness; P(E) � prob-
ability of error; Pre. � predicted; Obs. � observed.
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tering tasks (Figure 5c). Finally, as was the case for the
EBRW model, the DBM predicts RTs in the correlated
task that are too slow.

Although we made no attempt to predict the mean RTs
in each task when fitting the models, some insights into
the models’ performance can be gained by considering the
means. Figure 9 plots, for each model separately, the ob-
served mean RTs in each of the eight tasks against
the predicted mean RTs. To achieve clearer comparisons,
the results for each filtering task are broken down into two
means. The first mean corresponds to Stimulus Pair A–D,
whereas the second mean corresponds to Stimulus Pair
B–C. On this criterion of predicting the mean RTs, the
EBRW model performs far better than the DBM. The
correlation between predicted and observed mean RTs is
r � .968 for the EBRW model, but only r � .809 for the
DBM. Whereas the EBRW model makes only small er-
rors in predicting the ordering of mean RTs across tasks,
the DBM suffers the critical qualitative shortcoming of
predicting virtually identical overall mean RTs in the
control–pitch and filter–pitch tasks and in the control–
loudness and filter–loudness tasks. Indeed, it predicts a
slightly faster mean RT for Stimulus Pair A–D in the
filter–pitch task than for either Pair A–B or Pair C–D in
the control–pitch tasks. Likewise, it predicts a slightly
faster mean RT for Pair A–D in the filter–loudness task
than for either Pair A– C or Pair B–D in the control–
loudness tasks. The observed data, however, are decid-
edly in the opposite direction.

Beyond the main interference and facilitation effects
that we have already discussed in this article, Figure 9
reveals the following more fine-grained qualitative effects:
(1) mean RTs in the control–pitch tasks were faster than
in the control–loudness tasks; (2) mean RTs for corre-

sponding pairs of stimuli were faster in the filter–pitch
tasks than in the filter–loudness tasks; (3) within the
control–pitch tasks, Pair C–D was discriminated more
rapidly than Pair A–B; (4) within the control–loudness
tasks, Pair B–D was discriminated more rapidly than
Pair A–C; (5) in the correlated tasks, Pair A–D was dis-

Table 4
DBM Predictions of Vincentized Bin Probabilities and Overall Accuracies in Each Task

Decile P(E)

Task 1 2 3 4 5 6 7 8 9 10 Pre. Obs.

CP-A 0.084 0.090 0.094 0.098 0.095 0.094 0.094 0.100 0.113 0.139 .040 .037
CP-B 0.079 0.089 0.088 0.090 0.092 0.096 0.092 0.103 0.120 0.152
CP-C 0.071 0.082 0.090 0.093 0.095 0.093 0.090 0.116 0.127 0.143 .031 .027
CP-D 0.074 0.081 0.086 0.092 0.100 0.101 0.093 0.107 0.117 0.148
CL-A 0.089 0.095 0.089 0.092 0.086 0.098 0.101 0.114 0.118 0.119 .039 .036
CL-C 0.068 0.063 0.075 0.094 0.107 0.110 0.115 0.123 0.127 0.118
CL-B 0.107 0.099 0.098 0.099 0.091 0.093 0.100 0.090 0.106 0.117 .032 .032
CL-D 0.063 0.074 0.085 0.089 0.102 0.099 0.097 0.109 0.130 0.151
Cr-A 0.092 0.108 0.098 0.109 0.108 0.100 0.096 0.106 0.115 0.068 .003 .016
Cr-D 0.047 0.080 0.096 0.099 0.102 0.104 0.126 0.161 0.126 0.060
Cr-B 0.068 0.079 0.080 0.087 0.102 0.117 0.119 0.123 0.127 0.098 .011 .023
Cr-C 0.051 0.073 0.090 0.099 0.099 0.105 0.106 0.111 0.140 0.126
FP-A 0.174 0.116 0.109 0.091 0.093 0.113 0.097 0.076 0.069 0.061 .043 .043
FP-B 0.175 0.128 0.110 0.108 0.106 0.085 0.064 0.060 0.076 0.087
FP-C 0.157 0.149 0.135 0.101 0.090 0.081 0.070 0.068 0.077 0.072
FP-D 0.163 0.129 0.108 0.103 0.106 0.099 0.085 0.078 0.065 0.064
FL-A 0.134 0.104 0.096 0.097 0.102 0.099 0.091 0.094 0.094 0.091 .042 .047
FL-B 0.162 0.121 0.087 0.093 0.097 0.088 0.088 0.092 0.085 0.089
FL-C 0.128 0.098 0.104 0.097 0.109 0.117 0.099 0.080 0.083 0.085
FL-D 0.111 0.088 0.099 0.127 0.123 0.096 0.112 0.098 0.077 0.070

Note—CP � control–pitch; CL � control–loudness; Cr � correlated; FP � filter–pitch; FL � filter–loudness; P(E) � prob-
ability of error; Pre. � predicted; Obs. � observed.

Table 5
Best-Fitting Parameters for the Baseline and Extended Versions

of the Exemplar-Based Retrieval (EBRW) Model
and the Decision-Bound Model (DBM)

EBRW DBM

Baseline Extended Baseline Extended

xB1 1.123 1.097 1.173 1.147
xB2 0.021 �0.018 0.018 0.041
xC1 0.134 0.097 0.059 0.061
xC2 1.031 1.016 0.981 1.006
xD1 1.378 1.290 1.309 1.284
xD2 1.039 1.036 1.045 1.048
watt 0.595 0.608 — —
γ 1.384 1.634 — —
α 0.199 0.199 — —
β — — 3.824 4.348
crit 6 6 — —
s1 — — 0.336 0.324
s2 — — 0.278 0.278
ρ — — �0.049 0.006
κ — — 1.039 1.048
µR 277.193 281.261 332.184 332.161
σR 37.365 37.375 43.742 44.377
k 36.785 37.142 512.065 512.573
p — 0.325 — —
lcrit — 3 — —
β * — — — 3.333

Note—The value of β for the DBM can be set at 1.0 without loss of
generality by rescaling the xim, s1, s2, and κ parameters, so the baseline
DBM uses 13 free parameters. The values of xA1 and xA2 are held fixed
at zero because the origin of the space is arbitrary. *A separate value
of β was estimated for the filtering conditions.
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Figure 6. Individual RT distributions for each individual stimulus in each task.
Panel a: Predictions for the EBRW model. Panel b: Predictions for the DBM. The first
two letters in each plot denote the type of task, and the third letter denotes the indi-
vidual stimulus. CP � control–pitch; CL � control–loudness; Cr � correlated; FP �
filter–pitch; FL � filter–loudness.
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criminated more rapidly than Pair B–C; (6) in both the
filter–pitch task and the filter–loudness task, Pair A–D
was discriminated more rapidly than Pair B–C. As can
be seen in Figure 9a, the EBRW model accounts correctly
for all of these qualitative effects. It does so by position-
ing the four stimuli in a roughly trapezoidal configura-
tion that is slightly stretched along the pitch dimension,
as illustrated in Figure 10a (see stimulus-coordinate pa-
rameter estimates in Table 5). The DBM produces a sim-
ilar configuration, as illustrated in Figure 10b. Thus, the
hypothesis of a mean-shift integrality (Ashby & Mad-
dox, 1994; Kingston & Macmillan, 1995), which we dis-
cussed earlier in this article, is strongly supported by these
modeling analyses. (It is important to note that the mean-
shift integrality configuration also allowed both models
to make the correct qualitative prediction that the error rate
on the A–D pair was lower than on the B–C pair in both
filtering tasks.) However, despite the existence of the
mean-shift integrality, the DBM fails to account for the

key qualitative finding of a uniform interference effect in
the filtering conditions relative to the control conditions.

Another qualitative distinction between the models is
revealed by examining the very fastest RTs in each type
of task. Note that each simulation of a model across the
eight tasks can be viewed as a simulation for a single ob-
server. For the 10,000 individual-observer simulations of
each model, we conducted the following analysis. On
each simulation, we computed the median of the 10 fastest
RTs in each control–pitch task and then averaged these
medians. We also computed, on each simulation, the me-
dian of the 10 fastest RTs in the filter–pitch task. An
analogous procedure was used for the control–loudness
and filter–loudness tasks. For ease of description, let us
refer to the median of these fast RTs as the MFRT. For the
EBRW model, the control–pitch MFRT was faster than
the filter–pitch MFRT on 65% of the simulations, and
the control–loudness MFRT was faster than the filter–
loudness MFRT on 65% of the simulations. By contrast,
for the DBM, the control–pitch MFRT was faster than the

Figure 7. Observed global distributions for each type of task
plotted with predicted global distributions from the EBRW model.

Figure 8. Observed global distributions for each type of task
plotted with predicted global distributions from the DBM.
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filter–pitch MFRT on only 48% of the simulations, and
the control–loudness MFRT was faster than the filter–
loudness MFRT on only 48% of the simulations. Thus,
the EBRW model predicts an advantage for the control
MFRTs, whereas the DBM predicts either no difference
or a slight advantage for the filtering MFRTs. In our
analysis of the actual observed data, we found that 65%
of the participants had faster control–pitch MFRTs than
filter–pitch MFRTs, and that 73% of the participants had
faster control–loudness MFRTs than f ilter–loudness
MFRTs. Overall, the observed MFRTs in the control tasks
(M � 308.4 msec) were significantly faster than the
MFRTs in the filtering tasks (M � 326.3 msec) [t (25) �
6.46, p < .001]. Thus, with regard to the fastest RTs in the

control and filtering tasks, the qualitative prediction of the
EBRW model is clearly supported over that of the DBM.

The shortcomings of the DBM can be conceptualized
as follows. To account for filtering interference in the mean
RTs, this model posits the existence of increased variance
due to uncertainty effects (Figure 3c), mean-shift integral-
ity (Figure 3d), or some combination of these two factors.
The best-fitting parameters for the DBM seem to be try-
ing to make use of both sources of interference. There is
a mean-shift integrality (Figure 10b), and the standard-
deviation multiplier in the filtering tasks is greater than
one (κ� 1.04; see Table 5). If the magnitude of these pa-
rameters were increased, the DBM would be more suc-
cessful at predicting the overall interference effects in the

Figure 9. Observed mean RTs in each individual task plotted against predicted mean RTs.
Letters to the left of each hyphen denote the type of task, and letters to the right denote the
specific stimulus pair involved. CP � control–pitch; CL � control–loudness; Cr � corre-
lated; FP � filter–pitch; FL � filter–loudness. Panel a: Predictions for the EBRW model.
Panel b: Predictions for the DBM.

Figure 10. Panel a: Stimulus coordinates derived by fitting the EBRW model to the RT dis-
tribution data. Panel b: GRT representation derived by fitting the DBM to the RT distribu-
tion data.



1044 NOSOFSKY AND PALMERI

mean RTs. Unfortunately, however, the DBM is caught
in a bind. Increasing the magnitude of these parameters
forces the DBM to simultaneously predict both a far
greater proportion of very slow RTs and a far greater pro-
portion of very fast RTs. Indeed, with the current param-
eter estimates, the DBM already makes the incorrect qual-
itative prediction of slightly faster MFRTs in the filtering
tasks than in the control tasks. In sum, the constraints
yielded by requiring the DBM to fit the actual RT distri-
bution data for the individual stimuli pose an interesting
challenge to the model.

Examination of Best-Fitting Parameters
In this section, we briefly consider the best-fitting para-

meters from the EBRW model and the DBM (see Ta-
ble 5). Interestingly, similar estimates were obtained of
those parameters that play the same conceptual role
across the two models, suggesting that the models may
have much in common. For example, as discussed previ-
ously, in both models, the estimated stimulus coordinates
gave rise to the roughly trapezoidal multidimensional
scaling (MDS) configuration associated with mean-shift
integrality (Figures 10a and 10b). Also, the estimated
mean and standard deviation of residual times (µR and
σR ) were similar across the models.

In the distance function used by the EBRW model
(Equation 1), the best-fitting value of the power exponent
was γ � 1.38, which is consistent with our intuition that
the dimensions of pitch and loudness lie intermediate
along the integrality–separability continuum. Also, the
estimated attention weight, watt � .595, is consistent 
with our expectation that observers attempted to attend
selectively to the relevant dimension in each task, but
that the integrality of the dimensions prevented perfect
selective attention. Finally, as noted previously for the
DBM, the value of κ > 1 is consistent with expectations
emerging from that framework that the increased number
of stimuli in the filtering task gives rise to uncertainty
effects.

Extended Versions of the Models
In this section, we briefly consider extended versions

of the EBRW model and the DBM. Although we have
not stated so explicitly, note that, in our tests of the base-
line models in the previous section, we strove for pa-
rameter invariance across conditions.6 The key issue was
the extent to which the EBRW model and the DBM could
predict a priori the fundamental interference and facili-
tation effects observed for these integral-dimension stim-
uli. A natural question, however, is whether improved
fits can be obtained by allowing psychologically plausi-
ble variations in parameter settings across conditions.

The main shortcoming of the EBRW model is that it
underestimated the degree of facilitation in RTs observed
in the correlated tasks. At the same time, however, it un-
derestimated the observed error rate in these tasks. A
salient possibility, therefore, is that a speed–accuracy

tradeoff may have been operating. One way that the EBRW
model can model speed–accuracy tradeoffs is in terms
of shifts of the response-criterion parameter, crit. Setting
crit at lower values, for example, leads the system to re-
spond after retrieving fewer exemplars, which tends to
speed RTs but decrease accuracy.

There are numerous ways to formalize this idea of
varying criterion settings. As an illustrative example, we
fitted a mixture model that assumed that, with probabil-
ity p, an observer used a criterion setting in the corre-
lated task that was identical to the one used in the con-
trol and filtering tasks and, with probability 1�p, used a
lower setting of the criterion parameter (lcrit). This model
extends the baseline version by adding the free param-
eters p and lcrit. The fits of the extended model to the RT
distribution and accuracy data were excellent. Although
the baseline EBRW model was already doing fairly well
at fitting the data, the extended model reduced SSD(RT)
from .080 to .050 and reduced SSD(A) from .00059 to
.00036 (the best-fitting parameters are reported in Ta-
ble 5). The impressive performance of the model is sum-
marized in Figure 11, where we plot the predicted global
distributions against the observed global distributions in
the control, correlated, and filtering tasks. The model
still slightly overpredicts the percentage of filtering RTs
in the first bin, but, otherwise, there is little room for
improvement.

Recall that, in our tests of the baseline DBM, we as-
sumed that the participants adopted orthogonal linear
boundaries in the control and filtering conditions and
adopted diagonal minimum distance boundaries in the
correlated conditions. Also, we assumed an unbiased
placement of these bounds. There is precedence for the
assumption of orthogonal linear boundaries in the con-
trol and filtering tasks, particularly in situations in which
inexperienced observers are instructed to classify on the
basis of values on a single dimension (Ashby & Maddox,
1994). Furthermore, our assumption of unbiased place-
ment of the bounds was based on the symmetric structure
of all the categorization tasks. Nevertheless, to further in-
vestigate the issue, we assumed in an extended version of
the model that the participants adopted linear decision
bounds in all conditions, but we allowed the parameters
of these linear boundaries to be completely free. Because
there were eight conditions, and each linear boundary is
described by two free parameters (a slope and intercept),
this extended model used 16 additional free parameters,
relative to the baseline version. Even with this large in-
crease in the number of free parameters, however, the
improvement in fit yielded by this extended model was
minimal: SSD(RT) was reduced from .099 to .095, and
SSD(A) from .00036 to .00032. Furthermore, the model
still failed to predict the interference in RTs observed in
the filtering tasks. Analyses were also conducted that al-
lowed for variability in the criterion setting of the linear
boundaries across trials of the experiment, but allowing
for this criterial variability provided no improvement in
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fit. These analyses do not rule out, of course, the possibil-
ity that the participants may have used nonlinear decision
boundaries in the different speeded classification tasks.

A straightforward approach to enabling the DBM to
fit the interference effects in the filtering data is simply
to allow differences in the β parameter across conditions.
Recall that β determines the rate at which decision time
decreases with distance-from-bound (Equation 6). If β is
set at a lower value in the filtering conditions than in the
control and correlated conditions, then slower filtering
RTs can be well fitted. Indeed, an extended version of
the DBM that allowed separate β parameters yielded an
outstanding fit to the data [SSD(T) � .048, SSD(RT) �
.038, and SSD(A) � .00040]. The best-fitting param-
eters are reported in Table 5.

Unfortunately, we consider this extended version of the
DBM to be unprincipled and completely post hoc. It pro-
vides no explanation of the interference observed in the
filtering condition but simply redescribes it. (A similarly
good fit can be achieved by the EBRW model by allow-
ing changes in the scaling factor c across conditions.) To
achieve a principled explanation, the decision-bound
theorist would need to develop some account of how and

why β might vary across conditions (and then this ac-
count would need to be subjected to experimental test).
Nevertheless, we felt it was important to acknowledge
the excellent fits that can be achieved by this extended
descriptive model, because it highlights a potential direc-
tion for future model development within the decision-
bound framework.

A similar criticism regarding post hoc data fitting can
be raised about our assumption of varying criterion set-
tings in the extended EBRW model. An important differ-
ence, however, is that, in the EBRW model, the criterion
setting affects both the RT and the accuracy predictions of
the model, so there are independent bases for positing a
change in the parameter across conditions. By contrast,
in current versions of decision-bound theory, accuracy
predictions are completely unaffected by the value of β.
Nevertheless, an important direction for future model
development within the exemplar-retrieval framework is
to develop a richer theory of how the criterion setting is
expected to vary across conditions.

GENERAL DISCUSSION

Summary
The central goal of this research was to evaluate two

current models, the EBRW model and the DBM, on their
ability to account quantitatively for detailed RT distri-
bution and accuracy data observed for individual stimuli
in the Garner speeded classification tasks. Because of
the fundamental nature of the Garner tasks, we consid-
ered them an important testing ground for the develop-
ment of multidimensional models of speeded perceptual
classification. Furthermore, in this investigation, we fo-
cused on the performance of relatively inexperienced
participants making speeded classifications of integral-
dimension stimuli, because it was in this domain that
Garner (1974) brought out the systematic and robust fa-
cilitation and interference effects that are of greatest
challenge to the models.

The baseline version of the EBRW model yielded a
reasonably good quantitative account of the RT distri-
bution and accuracy data. In addition to correctly predict-
ing the fundamental qualitative effects of facilitation in
the correlated tasks and interference in the filtering tasks,
it provided good quantitative fits to the detailed shapes
of the RT distributions. A limitation of the model is that
it underestimated the magnitude of the facilitation effect
in the correlated task. However, an extended version of the
model, which made allowance for speed–accuracy trade-
offs due to variations in the criterion setting, pinpointed
the observed RTs and accuracies across all tasks.

The DBM also yielded a reasonably good global quan-
titative fit to the data. However, it failed to predict the inter-
ference effect observed in the filtering tasks. Past theo-
rizing involving the DBM suggested that the main
reasons for filtering interference are a mean-shift inte-
grality in the perceived stimulus locations and an in-
crease in perceptual variance due to uncertainty effects
(Ashby & Maddox, 1994; Kingston & Macmillan, 1995).

Figure 11. Observed global distributions for the control, cor-
related, and filtering tasks plotted with the global distributions
predicted by the EBRW model with mixed criterion settings.
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Although these factors can produce an interference effect
in the mean RTs, our present investigation suggests that
they are not the only factors operating. In particular, in
combination with the other assumptions embodied in
current versions of decision-bound theory, these factors
produced poor predictions of the detailed structure of the
RT distributions in the filtering task. The model also
failed to predict the ordering of mean RTs associated with
individual stimuli across the tasks. It seems to us, there-
fore, that the basis for RT interference in the filtering
task remains something of a mystery from the perspec-
tive of the DBM.

Furthermore, it may not be easy to remedy this short-
coming with only minor modifications of the DBM.
Maddox and Ashby (1996) have acknowledged that a
limitation of current versions of the DBM is that the ex-
ponential function relating decision time to distance-
from-bound (Equation 6) places an upper limit on the
maximum decision time. Thus, this version of the model
may predict too few long RTs. A straightforward idea,
therefore, is to use some alternative quantitative function
for relating decision time to distance. We believe, how-
ever, that for any monotonic decreasing function, the
DBM will suffer a fundamental qualitative shortcoming.
As illustrated in Figures 3c and 3d, as long as the func-
tion relating decision time to distance is monotonic, the
DBM predicts that the very fastest RTs in the filtering task
will be as fast as or faster than the very fastest RTs in the
control tasks. The opposite pattern of results was observed
in our data, however. Modifying the exponential RT–
distance function might allow the DBM to better fit the
skewed right tail of the RT distributions (i.e., the very
slowest RTs), but it cannot save the DBM from its in-
correct prediction that the very fastest RTs should also
occur in the filtering task.

Future Research Directions
There are numerous avenues that need to be pursued

in continued tests of the present models. First, more mi-
crolevel analyses are needed that investigate the role of
sequential effects in speeded perceptual classification.
As currently formalized, neither the EBRW model nor
the DBM accounts for the sequential effects known to
exist in the Garner tasks. For example, Melara, Mounts,
and Yamagishi (1993) and Nosofsky and Palmeri (1997)
observed that, in the filtering task, the most rapid re-
sponses occurred on trials in which a stimulus was re-
peated, and the slowest responses occurred on trials in
which a new stimulus from the same category was pre-
sented. RTs were intermediate on those trials in which a
new stimulus was presented from a new category. A va-
riety of mechanisms may be involved in producing such
sequential effects. For example, in the EBRW model, de-
caying memory strength for previously presented exem-
plars will influence the speed of the random-walk process
(see Equations 3–5). Also, there are likely to be system-
atic criterion shifts from trial to trial that need to be mod-
eled (cf. Purks, Callahan, Braida, & Durlach, 1980). Re-
searchers have also suggested that observers may make

partial use of a “bypass rule” (Fletcher & Rabbitt, 1978;
Krueger & Shapiro, 1981) or trial-by-trial “change strat-
egy” (Melara et al., 1993) in their speeded classifications.
According to such a rule, if one detects any change in
the stimulus from the previous trial, then one responds
with the alternative category label. Such strategies could
perhaps be modeled in terms of systematic shifts in the
starting point of the random walk from trial to trial.

In addition to conducting more fine-grained analyses
within the control, filtering, and correlated tasks, we need
to move in the direction of testing the models on their abil-
ity to account for performance in more complex speeded
classification tasks. For example, in the condensation task
(also known as the divided attention task), participants
are required to classify Stimuli A and D into one category
and Stimuli B and C into a second category (see Figure 2).
It is well known that performance is extremely poor in
the condensation task. Nosofsky and Palmeri (1997) found
that the EBRW model provided a reasonably good quan-
titative account of the mean RT and accuracy in the con-
densation task, as long as assumptions were introduced
about criterion shifts involved in a speed–accuracy trade-
off across conditions. We need to test the model, how-
ever, on its ability to predict the structure of the individ-
ual stimulus RT distributions as well.

When “configural” dimensions are used, results of the
Garner speeded classification tasks are often quite com-
plicated. For example, if the dimensions are left and right
parentheses in either the left or right location, then the
four stimuli are A � ((, B � ( ), C � )( , and D � )).
Under such conditions, Pomerantz and Garner (1973)
found that performance in the condensation task [(( , ))
vs. ( ), )( ] is better than in the filtering tasks [e.g., (( , ( )
vs. )( , ))]. We follow Lockhead and King (1977) in in-
terpreting such results. MDS studies conducted by Lock-
head and King indicate that similarity relations among
the parentheses stimuli predict the speeded classification
times quite well. It is not simply the physically manipu-
lated features that determine performance but the emer-
gent or configural psychological dimensions along
which the objects are coded. Applications of the EBRW
model to speeded classification RTs require either de-
rived MDS solutions for the objects or a close correspon-
dence between the physical space used for constructing
the stimuli and the underlying psychological space in
which the objects are coded.

One point we wish to emphasize is that, although the
present applications of the EBRW model involved single-
point representations for each of the stimuli, we acknowl-
edge the importance of the probabilistic representations
assumed in decision-bound theory. Because of noise in
the sensory/memorial processing systems, the precise in-
ternal representation of a stimulus undoubtedly varies
from trial to trial. We view the single-point representa-
tion as a reasonable approximation in situations involv-
ing moderately discriminable stimuli, such as was the
case in the present experiment. To apply the EBRW
model to model speeded classifications of highly confus-
able stimuli, however, in which the perceptual/memory
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variance is presumably large relative to the distance be-
tween the means of the stimulus representations, it will
be critical to include parameters to model this variabil-
ity. Another avenue to improving the predictions of the
EBRW model is to incorporate assumptions about how
similarities among exemplars may change dynamically
during the course of psychological processing. Lamberts
(1995, 1996), for example, provided evidence for changes
in overall sensitivity (the value of c in Equation 2) and in
the distribution of the attention weights (the values of wm
in Equation 1) depending on the speed with which partici-
pants were required to make their classification judgments.

Finally, in the present research, the fundamental RT dis-
tribution data were obtained by pooling over participants.
Our reason for initiating the investigation with such a de-
sign is that we were primarily interested in modeling the
performance of relatively inexperienced participants, who
presumably had not yet learned complex decision bound-
aries. Nevertheless, as we acknowledged at the outset of
this article, averaged data can obscure patterns observed
at the individual subject level, so it is critical to pursue
these investigations by collecting extensive individual-
subject data as well. We have already tested 2 individual
observers over a period of 16 sessions using the same
stimulus set as in the present study. The data of both ex-
perienced observers showed the same fundamental quali-
tative patterns as for the averaged data of our novice ob-
servers. Even after 16 sessions of testing, there was
marked facilitation in the correlated tasks and marked in-
terference in the filtering tasks. Furthermore, the fastest
RTs in the control tasks were faster than the fastest RTs in
the filtering tasks, a pattern of results that we believe
places important constraints on the DBM. We plan to 
present a full report of these individual-subject data to-
gether with formal modeling analyses in a subsequent ar-
ticle.
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NOTES

1. As discussed previously by Nosofsky and Palmeri (1997, p. 271),
this simplifying assumption is most likely to be approximately satisfied
for stimuli varying along integral dimensions, which are encoded and
represented as unitary wholes. More complex assumptions regarding
encoding processes are needed for modeling speeded classification of 
separable-dimension stimuli, where serial processing (or limited ca-
pacity parallel processing) of individual dimensions is likely involved.
The present tests, however, focused on speeded classification of integral-
dimension stimuli.

2. Maddox and Ashby (1996) also considered a power model for re-
lating decision time to distance, but they found that the exponential

model yielded better overall quantitative fits. We observed the same pat-
tern in the fits to our data; therefore, in this article, we report only the
exponential-model fits.

3. To the extent that selective attention is imperfect in the filtering
task in a situation involving separable-dimension stimuli, then the
EBRW model begins to predict the same interference effects as ob-
served for integral-dimension stimuli. Likewise, to the extent that an
experienced observer learns to attend simultaneously to both dimen-
sions in the correlated task, the EBRW model will predict facilitation in
this task. The basis for these predictions is explained in the text in the
section in which the EBRW model is applied to integral-dimension
stimuli. Note that, in the speeded classification tasks, it would be opti-
mal for an observer to attend selectively to only the relevant dimension
in the control and filtering tasks but to attend to both dimensions in the
correlated task (where both dimensions are relevant). Thus, assuming
that highly experienced observers are able to learn to distribute atten-
tion in an optimal manner across tasks, performance patterns involving
separable-dimension stimuli that show a lack of interference in the fil-
tering task yet facilitation in the correlated task (cf. Maddox & Ashby,
1996) seem quite explicable in terms of the EBRW model.

4. The lowest and highest intervals are unbounded. Solely for pur-
poses of presenting visual displays of the distributions, we used the fol-
lowing arbitrary procedure for computing the width of these intervals.
(The procedure has no influence on how the fits of the models are com-
puted.) For the lowest interval (Bin 1), we defined an imaginary lower
cutoff to be the same distance from the Bin 1 mean as the Bin 1 and
Bin 2 means were from one another. Note that this procedure causes the
lower cutoff to be twice as far from the Bin 1 mean as is the upper cut-
off, so as to give a more accurate visual impression of what is truly an
unbounded interval. The width of the lowest interval was then given by
the distance between the upper cutoff and this imaginary lower cutoff.
An analogous procedure was used for computing the width of the high-
est interval.

5. Because our main concern was with the RT data in this study, and
the error proportions across all tasks were quite low, we decided in our
main modeling analyses to fit only the averaged error data across tasks.
Note, of course, that each model was allowed to predict that individual
stimuli within each task had different proportions of errors; it was sim-
ply that our criterion of fit considered only the averages computed over
the relevant stimuli. In an alternative set of modeling analyses, the ac-
curacy SSD [SSD(A)] was computed by summing over the squared de-
viations between predicted and observed error probabilities for each in-
dividual stimulus in each task. [Because there were 20 such individual
error probabilities, and 200 RT data points, the SSD(A) was weighted
by 10 when computing the SSD(T) in this analysis.] This modeling
analysis yielded the same pattern of results as the main one we report
in our article, and none of our conclusions were changed.

6. An exception for the EBRW model is that we assumed shifting pat-
terns of selective attention across conditions in which different dimen-
sions were relevant. (However, this shifting pattern was modeled in
terms of a single attention-weight parameter, watt , which was held
fixed.) This assumption of shifting selective attention has always been
a cornerstone of the exemplar-based classification model (Nosofsky,
1984, 1986). An exception for the DBM is that the variances of the stim-
ulus distributions were allowed to increase in the filtering conditions, as
modeled by the standard-deviation multiplier κ. This potential increase
in variance due to uncertainty effects is a central hypothesis stemming
from the DBM. Of course, different decision bounds were also assumed
to operate across the different conditions, but no free parameters were
involved in the estimation of these bounds.
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