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Biased Guessing in a Complete-Identification Visual-Working-Memory

Task: Further Evidence for Mixed-State Models

Robert M. Nosofsky and Jason M. Gold

Indiana University Bloomington

Research is reported that provides evidence for a significant role of mixed states and guessing processes
in tasks of visual working memory (VWM). Subjects engaged in a complete-identification VWM task.
The stimulus set consisted of 16 colors roughly equally spaced around a color circle. On each trial, a
memory-set drawn from the colors was briefly presented, followed by a location probe. Subjects
attempted to reproduce the color of the probed item by clicking on the appropriate response button of a
discrete color wheel. The key manipulation was to vary payoffs for alternative correct responses across
trials. Analysis of the resulting matrices of individual-subject identification-confusion data provided
evidence for a systematic guessing process: On trials in which subjects had no memory for the probed
stimulus, they guessed with high probability using the high-payoff response. Formal modeling corrob-
orated this interpretation. Mixed-state models that assumed that performance involved a combination of
memory-based responding and biased guessing yielded accurate and easy-to-interpret accounts of the
identification data; by comparison, variable-resources (VR) models without a guessing state struggled to
account for the data, including versions with bias parameters for the high-payoff response. The authors
argue that the work adds to recent converging sources of evidence that point to a significant role of
discrete, mixed states in VWM. The authors also suggest directions for development of extended VR

models with sophisticated knowledge-rich decision rules for the complete-identification task.

Public Significance Statement

Visual working memory serves as a foundation for numerous cognitive processes and tasks, including the
ability to search for visual targets, to comprehend visual displays, and to detect changes in visual scenes.
These issues are of great significance to the Air Force Office of Scientific Research (the source of funding
for the present work). For example, limits on visual working memory are of crucial importance in areas
such as monitoring of unmanned aerial vehicles and the piloting of aircraft. In this work, we find evidence
that the limits on visual working memory arise from limits in the number of objects that a human can store
in memory. The evidence suggests that zero information for the unstored items is retained. Such a result
has profound implications for what types of visual-display systems would lead to optimal forms of human
performance in wide varieties of vision-based decision making.

Keywords: visual working memory, mixed states, computational modeling

Visual working memory (VWM) is the short-term memory
(STM) system that maintains representations of visual objects. In
typical VWM tasks, observers are presented with a brief display of
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objects varying along continuous dimensions such as color or
angle. Following a brief retention interval, a location from the
original display is probed and the observer’s memory for the object
in the probed location is tested. A ubiquitous result is that observ-
ers’ memory for the individual objects in the display declines
dramatically as the number of to-be-remembered objects in the
display increases (Luck & Vogel, 1997).

Two major classes of theories have been proposed to explain the
severe capacity limit on VWM. In mixed-state models, it is as-
sumed that there are item limits: on any given trial, some subset of
the presented objects is retained in the VWM system, but for the
remaining objects all memory-based information is lost. Although
a variety of processes can give rise to such mixed states, the most
direct motivation for the idea comes from discrete-slots theories of
VWM (Awh, Barton, & Vogel, 2007; Cowan, 2001; Cowan &
Rouder, 2009; Donkin et al., 2013; Luck & Vogel, 2013; Rouder
et al., 2008; Vogel, Woodman, & Luck, 2001; Zhang & Luck,
2008). According to such theories, VWM has a limited number of
“slots” for storing objects in memory. If an object is not retained
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in one of the slots, then zero stimulus-based information regarding
the object remains. Thus, if the observer’s memory for this object
is tested, then he or she is forced to guess regarding the object’s
identity. We emphasize, however, that although discrete-slots the-
ories provide the most direct motivation for the hypothesis of
mixed states and guessing, the key focus in the present article is
simply on testing for the presence of mixed states in VWM, not on
the processes that give rise to them.

A second main class of theories is purely continuous in nature:
this class posits that there are memories for all items in the display,
although the fidelity of the memories may vary across different
items. This class is most directly motivated by shared-resources
theories of VWM (e.g., Bays, Catalao, & Husain, 2009; Bays &
Husain, 2008; Ma, Husain, & Bays, 2014). Such theories presume
that a limited pool of resources is shared in continuous fashion
across the items in the memory set. The greater the resources
devoted to a given item, the more fine-grained is the memory for
that item. According to modern versions of such models, the
amount of resources devoted to individual items may be highly
variable across the different items of the visual display (Fougnie,
Suchow, & Alvarez, 2012; Keshvari, van den Berg, & Ma, 2012,
2013; van den Berg, Shin, Chou, George, & Ma, 2012). However,
for the pure continuous class that we consider here, there is no true
guessing process.’

In recent years, a major paradigm that has been used for testing
the predictions of mixed state and variable-resources models is the
continuous-reproduction paradigm (van den Berg, Awh, & Ma,
2014; Wilken & Ma, 2004; Zhang & Luck, 2008). In this para-
digm, a particular location from the visual display is probed, and
the observer is required to point to an appropriate location on a
continuous response device, such as a continuous color wheel, that
reproduces the value of the originally studied object. For reasons
explained below, the continuous attribute is generally circular in
form, such as colors from a color wheel or angles varying along a
360° clock.

According to mixed-state models, if the studied object has been
retained in memory, then the continuous response is modeled as a
random draw from a (circular) normal distribution centered on the
value of the original stimulus. By contrast, if the studied object has
not been retained, then the observer guesses with a value that is
independent of the value of the originally presented stimulus.
Because the studied objects are drawn uniformly from a continu-
ous circular dimension (such as a color wheel), the aggregated
distribution of guessing errors across trials of the experiment will
be uniformly distributed (regardless of the specific guessing strat-
egy that is used). Thus, according to the mixed-state models, the
aggregated distribution of response errors across trials of the
experiment will be a mixture of a normal (centered on zero) and a
uniform distribution. This scenario is illustrated schematically in
the top panel of Figure 1 (e.g., Zhang & Luck, 2008).

By comparison, according to (pure) variable-resources models
of VWM, there is no guessing process. Instead, responses are
always stimulus based and are modeled as random draws from
circular normal distributions centered on the value of the original
stimulus. On trials in which the observer devoted a large propor-
tion of the pool of resources to the probed object, the random
draws will be from a normal distribution with a small variance,
reflecting precise perceptual memory. On trials in which a smaller
proportion of resources was devoted to the probed item, the per-
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Figure 1. Schematic illustration of distribution of response errors pro-

duced by models in the continuous-reproduction task. Top panel: mixed-
state memory-plus-guessing model. Bottom panel: variable-resources model.

ceptual memories become less precise, and the particular remem-
bered value on each trial will be a random draw from a normal
distribution with increasing variance. Across trials, the aggregated
distribution of response errors will be a mixture of random draws
from circular normal distributions (centered on zero) with variable
variances. This scenario is illustrated schematically in the bottom
panel of Figure 1 (e.g., van den Berg et al., 2012).

Comparing the top and bottom panels of Figure 1, it is apparent
that with appropriate choice of free parameters, the two classes of
models tend to make very similar qualitative predictions with
respect to the distribution of response errors in the continuous-
reproduction task. Factorial comparisons reported by van den

" Hybrid models have also been proposed that involve both shared
resources and item limits (e.g., Donkin, Nosofsky, Gold, & Shiffrin, 2013;
Sims, Jacobs, & Knill, 2012; Swan & Wyble, 2014; Zhang & Luck, 2008).
In the present research, however, our focus is on the class of variable-
resources models that assume that there are no significant item limits.
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Berg, Awh, and Ma (2014) found systematic improvements in
quantitative fit for models that presumed variable resources (al-
though there was also some evidence for occasional guessing).
However, it is currently unknown the extent to which these quan-
titative advantages for variable-resources models may depend on
detailed psychophysical parametric assumptions. For example,
there may be no very strong reason to assume that the component
memory distributions are precisely normally distributed (cf. Sims,
2015).

Modeling Unaggregated Data

Rather than relying solely on fine-grained quantitative fits to
data, an important complementary approach is to develop analytic
methods that yield qualitative contrasts among models. In an
ingenious approach reported in an unpublished article, Rouder,
Thiele, Province, Cusumano, and Cowan (2014) sought such a
contrast between the mixed-state and variable-resources classes of
models.> Among the key insights in their work was that certain
qualitative contrasts between the models could be achieved by
examining unaggregated forms of the continuous-reproduction
data. It is important to emphasize that in the schematic plots in
Figure 1, the data are distributions of response errors aggregated
across all stimuli from the circular set. In most past approaches to
contrasting mixed-state and variable-resources models of
continuous-reproduction, the target goal has been to fit this form of
aggregated response-error data. As will be seen, however, this
form of aggregation hides critical features of the data that may by
highly revealing of the nature of performance. In Rouder et al.’s
(2014) approach, the idea was to instead analyze the patterns of
responses given to individual stimuli from the set (for recent
applications of such an approach to closely related issues, see, e.g.,
Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman, Vergauwe,
& Ricker, 2017; Persaud & Hemmer, 2016; Pratte, Park, Rade-
maker, & Tong, 2017; Ricker & Hardman, 2017).

In particular, by considering responses given to individual stim-
uli, Rouder et al. (2014) were able to obtain evidence that appeared
to be highly diagnostic of pure guessing processes in the
continuous-reproduction task. They developed stimulus-response
plots in which the continuous stimulus values defined the x-axis,
and the continuous response values defined the y-axis (see Figure
2 for a schematic illustration). For each trial, the continuous-
valued response given to the continuous-valued stimulus would be
plotted. Naturally, for trials in which there was a memory for the
original stimulus, the response would tend to lie near the stimulus:
in this case, the distribution of responses would tend to lie along
the main diagonal of the plot, with the amount of scatter depending
on the amount of noise in the memory representation (open circles
in Figure 2). However, for trials involving the zero-information
state, the observer is forced to guess. By definition, the guess is
independent of the presented stimulus. But suppose there are
factors that lead observers to always guess with roughly the same
response. Such a process would produce what Rouder et al. (2014)
referred to as “response bands”—a horizontal swath of stimulus-
response points through the scatterplot—depicted schematically
by the crosses in Figure 2.

In Rouder et al.’s (2014) study, the investigators did indeed
observe evidence for these types of response bands in their data.
The stimuli they used were filled dots lying along an angular clock
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Figure 2. Schematic illustration of guessing-based response band with

biased guessing around value 10. See the online article for the color version
of this figure.

with angles varying from —60 degrees to 60 degrees. Noisy
response bands (analogous to the crosses in Figure 2) were ob-
served at —30 degrees and 30 degrees, that is, values midway in
the negative and positive sets of angles. Apparently, subjects in
Rouder et al.’s (2014) study preferred to guess with these inter-
mediate values when they entered the zero-stimulus-information
state.® In addition to this form of qualitative visual evidence from
the plots, Rouder et al. (2014) found that mixed-state models that
allowed guessing processes provided better quantitative fits to
their individual-subject data than did a set of variable-resources
models that did not allow guessing processes.

Motivations for the Present Work

Response bias. In the present work, we took Rouder et al.’s
(2014) approach as a starting point for testing between mixed-state
and variable-resources models, but entertained a more nuanced con-
trast between the models. In particular, Rouder et al. (2014) assumed
forms of biased guessing in the mixed-state models; however, no form
of response bias was allowed in the variable-resources models. In our

2 We thank Jeffrey Rouder (personal communication, May 18, 2017) for
giving us permission to cite this unpublished article. Portions of the work
reported in Rouder et al.’s (2014) unpublished article were also presented
by Rouder (2015).

3 Rouder et al. (2014) also found evidence for a coarse categorical-
coding process in their results, in which the continuous reproduction was
biased toward a category code for the studied item (see also Bae et al.,
2015; Donkin, Nosofsky, Gold, & Shiffrin, 2015; Hardman et al., 2017;
Persaud & Hemmer, 2016). The evidence for the process was the presence
of localized horizontal response bands: rather than spanning the full range
of stimulus values (as illustrated schematically in our Figure 2), these
localized horizontal bands of responses were found only in the vicinity of
specific values of the studied stimuli. Hence, Rouder et al.’s preferred
model of continuous reproduction involved a combination of memories for
specific perceptual values, category-based memories, and biased guessing.
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view, even if observers’ continuous reproductions always make ref-
erence to memory-based information, as is assumed in the pure
variable-resources models, it is reasonable to assume that the final
response is some joint function of that remembered stimulus infor-
mation and forms of response bias.

Indeed, the continuous-reproduction paradigm can be viewed as an
example of a “complete identification” experiment, in which the goal
is to identify each individual stimulus with its own unique response
(Luce, 1963). The data in complete-identification experiments are
often tabulated in identification-confusion matrices, in which the cell
at the intersection of row i and column j of the matrix indicates the
frequency with which an observer identified stimulus i with response
j- Some of the most classic models in the field of experimental
psychology have been formulated to account for the structure of such
identification-confusion matrices (e.g., Green & Swets, 1966; Luce,
1963), and these models have both stimulus- and response-related
parameters. For example, according to the well-known similarity-
choice model (SCM; Luce, 1963; Shepard, 1957; Smith, 1980;
Townsend, 1971), the “strength” with which stimulus i points to
response j is given by bjs;, where s, is the “similarity” between
stimuli i and j, and b; is the “response bias™ associated with response
j.* Thus, just as observers may respond with systematic response
biases if they are in a pure guessing state (as suggested by Rouder et
al., 2014), so may response bias influence responding if the choices
are memory-based.

The main purpose of the present work was to contrast versions
of mixed-state and variable-resources models in which members of
both classes were endowed with response-bias mechanisms. As
will be seen, we do so by modeling unaggregated forms of
stimulus-response data in a complete-identification version of a
VWM task. In our view, our work will already entail a significant
extension of past applications of variable-resources models to
performance in the continuous-reproduction task (and discrete
analogues of the task). To our knowledge, the “decision rule”
assumed in past applications of such models is simply to pick the
response option that most closely matches the stimulus value that
has been stored in memory. As will be seen, our formal modeling
approach will instead combine memory-based information with
response-bias mechanisms to produce a more sophisticated deci-
sion rule.

An important caveat, however, is that in our tests of the
mixed-state and variable-resources models in the present work,
we will focus on what we refer to as “knowledge-limited”
versions of such models (Nosofsky & Donkin, 2016a). By
“knowledge-limited,” we mean that the observer is presumed to
have access to transparent aspects of the stimulus conditions,
such as the size of the memory set presented on a given trial, the
response options that are available on the response device, and
the location of the test probe. The observer is also presumed to
have access to the outcome of the memory-based processing
that took place. Thus, in the case of the mixed-state models, the
observer knows whether or not the memory-based information
regarding the probed stimulus is present or absent: If the
information is absent, then the system must guess. In our view,
this assumption involving the mixed-state model is an ex-
tremely weak one: If no memory-based information is present at
the probed location, then the observer has no recourse but to
guess. By contrast, a core assumption of the (pure) variable-
resources models is that some memory of the probed object is

always present. It is true that the processes that gave rise to this
memory may have been extremely noisy in nature, producing a
memory that departs dramatically from the value of the originally
presented stimulus. However, our assumption is that the decision
process is “knowledge limited” in the sense that the observer does
not have direct access to the statistics of the detailed psychological
and/or neurological processes that produced the variable memory
in the first place. Thus, for example, the observer’s memory may
be that the stimulus was “red”, but the observer does not have
access to information such as the detailed firing statistics or
patterns of activation across neural visual-coding units that pro-
duced the memory.

We return to this issue of knowledge-limited versus knowledge-
rich decision rules in our General Discussion section. To preview,
we believe that the account of our data provided by the mixed-state
models is simple, reasonably successful, and psychologically plau-
sible. By comparison, even when the variable-resources models
are endowed with a decision rule that incorporates response bias
(one of our main theoretical extensions of those models in the
present work), the knowledge-limited versions of those models
will struggle to account for our data. In our General Discussion
section, we then outline the directions that would be needed to
extend the variable-resources models with even more sophisticated
knowledge-rich decision rules for the continuous-reproduction
task, while expressing concerns about the psychological plausibil-
ity of such mechanisms.

Structure of the stimulus space. A related goal of the present
work was to examine the possibility that some of the past evidence
in favor of variable-resources models may reflect inappropriate
assumptions concerning the structure of the stimulus space. A
common assumption in modeling performance in the continuous-
reproduction VWM task is that adjacent stimuli are precisely
evenly spaced and occupy points along a perfect circle in the
space. However, as demonstrated by Pratte, Park, Rademaker, and
Tong (2017), if the equal-spacing assumption is incorrect, that
factor would bolster evidence in favor of the variable-resources
hypothesis. The problem is illustrated schematically in Figure 3,
which displays a case involving four consecutive stimuli that are
unevenly spaced, but in which the amount of memory noise that is
associated with each individual stimulus in the set is the same.’
Clearly, response errors would tend to be greater between items a
and b than between items ¢ and d. However, because the typical
modeling approach assumes equally spaced stimuli, the trials in-
volving presentations of objects a and b would lead to greater
estimates of memory variance (because of the greater tendency to
confuse the items); on the other hand, the trials involving presen-
tations of objects ¢ and d would lead to smaller estimates of
memory variance. Mixing such trials together in the aggregated
response-error analysis would then point toward a variable-
variances model (Pratte et al., 2017).

* As detailed in the Modeling-Analysis section, according to the SCM,
the conditional probability with which the observer identifies stimulus i
with response j is then found by dividing this strength by the sum of all
response strengths in row i of the matrix.

> Alternatively, one might posit equally spaced stimuli, but with sys-
tematic differences in memory noise associated with the individual items,
as in Pratte et al. (2017).
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Figure 3. Schematic illustration of unevenly spaced stimuli with the same
amount of memory noise.

Now, variable-resource theorists have been extremely careful to
acknowledge that there are numerous potential sources of varia-
tions in mnemonic precision across trials (e.g., van den Berg et al.,
2014, p. 142). Thus, one could argue that the presence of differ-
ences in item-specific discriminability is simply one factor that
contributes to the variable precision that is estimated when one fits
aggregated response-error data. Nevertheless, the core issue of
theoretical interest in contrasting mixed-state and variable-
resources models pertains to the locus of the severe capacity limit
of VWM—item limits versus continuous shared resources—not to
factors such as stimulus-specific differences in discriminability.
Thus, to achieve more penetrating analyses of the locus of the
capacity limit, our view is that both classes of models should be
formalized in a manner that is sensitive to factors such as item-
specific differences.

A more general problem than the possibility of unequal spacing is
the possibility that the stimuli do not lie along a perfect circle in the
psychological similarity space at all. Indeed, because each individu-
al’s sensory/perceptual system is likely calibrated in different ways,
our view is that the “perfect circle” assumption is an extremely strong
one that is unlikely to be satisfied. This form of model misspecifica-
tion is another factor that is likely to result in estimates of extensive
variable-memory variances across items and trials—but for reasons
other than the core hypothesis of dramatic differences in resource
sharing across the items of the memory display.

Thus, in the present work, we explicitly compare: (a) models
that assume that the stimuli are positioned in a perfectly evenly
spaced circle to (b) models in which the stimulus locations are
themselves allowed to vary as free parameters. We then examine
how these alternative assumptions involving the stimulus config-
uration may bear on conclusions involving mixed-state versus
variable-resources models.

Experiment

In summary, our goal is to contrast predictions from (knowledge-
limited) mixed-state and variable-resources models of VWM by an-
alyzing the data structure of complete identification-confusion matri-
ces in which response errors are not aggregated across items.
Following Rouder et al. (2014), evidence for guessing may be found
in systematic response biases exhibited during guessing states;
however, we make allowance for the possibility that systematic
response biases may also intervene in cases in which memory-
based information is retained. (We describe below the approach to

teasing apart these alternative possibilities.) A secondary goal is to
consider models that relax the assumption that all stimuli reside in
an evenly spaced fashion along a perfect circle in the similarity
space. Thus, in generalized versions of the models, the stimulus
coordinates for the individual items are themselves allowed to vary
as free parameters.

Because the goal is to estimate parameters associated with
individual response biases and individual-item stimulus locations,
rather than conducting the traditional “continuous” reproduction
task, we instead conduct a discretized version of the task. In the
“continuous” task, there are typically 180 individual stimuli lo-
cated around the circular space. Because the continuous response
device has responses corresponding to each of the 180 stimuli, this
arrangement leads to what is in effect a 180 X 180 stimulus-
response confusion matrix. Because of the enormous number of
cells, the resulting confusion matrix would be too sparse to allow
realistic estimation of response biases and stimulus coordinates
associated with the individual items. Thus, in the present experi-
ment, we instead use a set of to-be-remembered items that consists
of only 16 stimuli (a set of colors) that are evenly spaced around
a color circle (in an assumed schematic sense). On each trial of the
experiment, a memory set consisting of two, five, or eight colored
squares is briefly displayed on the computer screen. Following a
brief retention interval, a location from the visual display is
probed, and the subject attempts to identify the stimulus that
resided at that location by clicking on the appropriate response-box
of a discretized color wheel (with 16 response options). The sets of
16 X 16 stimulus-response confusion matrices that are produced
across the different conditions of testing allow for estimation of the
formal parameters of theoretical interest.

A key to finding evidence of guessing from a zero-stimulus-
information state is to induce systematic forms of guessing when the
guessing process occurs. (If the form of guessing is idiosyncratic or
unknown, then multiple post hoc free parameters would be required to
capture the details of the guessing process, which would defeat the
goal of achieving sharp contrasts between the predictions from the
competing classes of models.) In Rouder et al.’s (2014) study, this
goal was accomplished by having subjects try to reproduce angles
from a restricted range; it was discovered that, within this restricted
range, subjects had strong biases to guess with angles that were
intermediate in both the positive and negative regions. In the present
experiment, we instead seek to induce systematic forms of guessing
by using payoffs for alternative correct responses. On each trial,
subsequent to the presentation of the visual display, one of four
widely spread potential responses is highlighted for receipt of a large
payoff if the response is correct (see Method section for details). The
intuition is that if an observer is truly in a zero-memory state with
respect to the probed stimulus location, then he or she might as well
guess with the high-payoff response. According to the mixed-state
models, this guess would be independent of the stimulus that had
actually appeared at the probed location, because there is zero mem-
ory for that stimulus. By contrast, according to the variable-resources
models, there is no true guessing state: instead, memories are drawn
from distributions with varying variances across trials and items. As
will be seen, in the present modeling analyses, we make allowance for
the possibility that the selected response is a joint function of the
variable memory distribution and the induced response bias. The
intuition, however, is that unlike in the mixed-state models, the final
response is rarely completely independent of the original stimulus. (To
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anticipate, our analysis will allow for the extreme possibility that, on
some trials, the memory representation is indeed so poor that the
observer is essentially in a guessing state: a perfectly flat memory
distribution. Even making allowance for this extreme possibility, the
constraints in our design are sufficient to challenge the predictions
from the present class of variable-resources models.)

Because our concern is with the detailed nature of performance
at the individual-subject level, our modeling efforts are directed at
individual-subject identification-confusion matrices rather than at
averaged data. Therefore, in our experimental method, we test
relatively few subjects for very large numbers of trials. As
explained below, this method provides very high power for
achieving strong contrasts in the fits of the competing models to
the individual-subject data. Future work and alternative ap-
proaches would be needed to systematically address questions
such as patterns of variability between subjects and individual
differences.

Method

Subjects

The subjects were eight members of the Indiana University com-
munity who were paid for their participation. Subjects were paid
$12 per 1-hr session plus a bonus of up to $5 per session depending
on overall performance. Subjects 1 and 3-7 each participated for 10
1-hr sessions; Subjects 2 and 8 each participated for nine 1-hr ses-
sions. Because there were 384 trials per session (see Procedure sec-
tion), the total sample size was 3,840 trials for Subjects 1 and 3-7, and
3,456 trials for Subjects 2 and 8. Model-recovery analyses (described
in our Formal Models section) confirmed that these sample sizes
yielded high power for contrasting the quantitative fits of the com-
peting models to the individual-subject data. All subjects had normal
or corrected-to-normal visual acuity. Subjects 1-7 all reported having
normal color vision. At the start of the first session, Subject 8 reported
that he had partial color blindness (the formal diagnosis was un-
known). Because the formal models make allowance for the psycho-
logical representations of the stimuli to depart from the color circle
(see Formal Modeling section), we decided it would be interesting to
continue to test the subject: The models could be used to reveal how
the subject’s psychological representation of the stimuli differed from
that of the other subjects.

Apparatus

All stimuli were generated using MATLAB (version 7.1) and
the extensions provided by the Psychophysics Toolbox (Brainard,
1997). The stimuli were presented on a single Apple iMac com-
puter with an integrated Sony Trinitron Multiscan 420GS CRT at
a frame rate of 100 Hz (resolution: 1,024 X 768 pixels; size:
38.25 X 28.5 cm). The luminance and color calibration measure-
ments were obtained using in-house software and a Photo Re-
search PR-174 SpecraScan radiometer. The maximum and mini-
mum displayable luminances were 131.7 cd/m? and 0.02 cd/m?,
respectively. Viewing distance was approximately 57 cm.

Stimuli

The stimuli consisted of 16 colors that were evenly sampled
every 22.5 degrees around the perimeter of a circle in the L*a*b"

color space (L = 50, a = 10, b = 10, with a radius of 40 units).
The memory set patches were presented as 20 X 20 pixel (0.75 X
0.75 degrees of visual angle) squares within a 200 X 200 pixel
(7.46 X 7.46 degrees of visual angle) region centered on the
computer screen. The response-selection window was composed
of all 16 color patches (same size as the memory set patches),
spaced evenly around the perimeter of a virtual circle centered
within the display and with a radius of 214 pixels (8 degrees of
visual angle). One of the response-selection window color patches
(the “high payoff” patch) was bounded by a white 2 pixel-wide
(0.08 degrees of visual angle) box on each trial and set to the
maximum displayable luminance. The four possible locations of
the high payoff patches were chosen to be at 90-degree increments
around the perimeter of the virtual circle, with the first starting at
45 degrees clockwise from the top of the circle. (The four high-
payoff items corresponded to item numbers 3, 7, 11, and 15 in the
16-stimulus set.) The locations of the color patches around the
perimeter of the virtual circle in the selection window remained
constant throughout the experiment and were identical for all eight
subjects.

The background color of the screen was set to midgray (50.17 cd/m?).
The white bounding box that appeared around the probe location on
each trial was 2 pixels wide and set to the maximum displayable
luminance. The black fixation point that appeared at the beginning of
each trial was 2 X 2 pixels in size and was set to the minimum
displayable luminance.

Procedure

An example of the main sequence of events that took place on
each trial of the experiment is illustrated in Figure 4. First, all trials
began with a 1,500 ms fixation point at the center of the screen (not
shown in the figure). Then, as illustrated in the top panel of Figure
4, a memory set of either two, five or eight colored square patches
(five, in this example) was presented on the computer screen in
random locations within the central 200 X 200 pixel rectangular
region, subject to the constraint that the centers of each square
were at least 40 pixels (1.49 degrees of visual angle) away from
each other. The memory-set colors were randomly selected on
each trial. The duration of the memory-set display was 500 ms.
Immediately afterward, the study squares were replaced by iden-
tically sized multicolor masking patches for 100 ms (middle panel
of Figure 4).

Next, as illustrated in the bottom panel of Figure 4, a single
randomly chosen color patch from the memory set was probed by
presenting a white bounding box around the location where it had just
been presented during the study period. (Because the illustrative
display windows in Figure 4 are spatially displaced, it is far more
difficult to determine the location of the probe box in the figure than
occurred in the actual experiment.) After a 500-ms delay, the
response-selection wheel was also concurrently displayed, which con-
tained all 16 possible color patches spaced equally along the perimeter
of a virtual circle. One of the four possible high-payoff patches
appeared surrounded by a white bounding box. In the Figure 4
example, the high-payoff item is Color 7 at the southeast location of
the response-selection window—alternatively, the high-payoff item
might be one of colors: three (northeast), 11 (southwest), or 15
(northwest). Our motivation for using four widely spaced high-payoff
items (rather than a single item) was to prevent participants from
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Memory Set
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Figure 4. Tllustration of the sequence of main display windows in the
experimental paradigm. Top panel: example memory set. Middle panel:
masking stimuli. Bottom panel: test probe and response-selection wheel
with an indicated high-payoff item. See the online article for the color
version of this figure.

engaging in preparatory strategies in which they might try to focus
attention on local regions of the color space that were present in the
memory-set display. The selection window and the probe-bounding
box remained on the screen until the subject chose one of the 16
color-response patches using a mouse click. After the choice was
made, the screen was cleared and accuracy feedback was presented by
showing the color of the correct color patch in the center of screen. If
the observer was incorrect in their choice, the word WRONG!
appeared above the color patch. If they were correct, the word
CORRECT! appeared above the color patch, along with the number
of points they earned (either +1 for a regular match or +10 for a
high-payoff match). The accuracy feedback remained on the screen
for 1,500 ms, after which the screen was cleared and the next trial
began.

Each session of the experiment was divided into four blocks of
96 trials each (three set sizes X four high-payoff patches x eight
trials per high-payoff patch) for a total of 384 trials per session.
The order of trials was randomly intermixed with each block.
Subjects were rewarded points on each trial for correctly identi-
fying the probe. They earned one point if they were correct but the
probe did not happen to match the high-payoff patch, and they
earned 10 points if they were correct and it did happen to match the
high-payoff patch. The number of trials where the probe matched
the high-payoff patch was randomly determined. As such, it had
the same probability of occurring as any of the other 15 color
matches.

The experiment began by providing subjects with information
that showed the number of points they would earn for correctly

identifying a regular patch and a high-payoff patch, the total
number of trials in the experiment, the minimum number of points
they needed to start earning a bonus (240 points), and the maxi-
mum bonus they could receive for accumulating points beyond the
minimum ($5). Bonus payoffs increased from $0 to $5 according
to a linear function that ranged between the minimum number of
points required for a bonus and the maximum number of possible
points in the given session (the maximum number of points varied
slightly from session to session, due to the variable number of
high-payoff matches that happened to be randomly generated by
chance). Subjects were given feedback about their total point and
bonus accumulation as well as the number of trials remaining in
the experiment after every 25 trials of the experiment.

Results

Our central aim is to contrast formalized versions of mixed-state
and variable-resources models on their ability to account for the
detailed structure of the individual-subject identification-confusion
matrices observed in our task. These formal modeling analyses are
reported in the next main section of our article. In the present
section, we start by providing a brief summary of the general
pattern of results, averaged across the subjects (not including the
color-blind subject). The purpose of these initial analyses is simply
to confirm that the main experimental manipulations of memory
set size, payoffs, and similarity structure affected performance in
sensible and expected ways. In addition, we preview the type of
stimulus-response structure that is present in the confusion matri-
ces and that will serve as the target for the model fitting reported
in our next section.

Averaged across the payoff conditions, mean proportion correct
was .76, .49, and .34 in the set-size two, five, and eight conditions,
respectively. This classic set-size-effect is as predicted by both
classes of models. A more fine-grained summary of the response
patterns is displayed in Figure 5. The figure restricts consideration
to the high-payoff items only (3, 7, 11, and 15). The figure displays
the average probability (across these four items) with which stim-
ulus i was identified as stimulus j, with values of j =1 — 3,1 — 2,
i—1,i,i+ 1,i+ 2,andi + 3. In computing these profiles, we
excluded each condition in which each stimulus i was the high-
payoff item, in order to characterize the pattern of confusions
without a strong influence of the payoff manipulation. As can be
seen from the figure, in all set-size conditions, the highest entries
are the correct responses (identifying stimulus i with response 1),
and the confusion probabilities decrease steadily as the distance of
response j from stimulus i increases. This systematic effect of
stimulus similarity on the pattern of response probabilities is also
as one would expect according to both classes of models.

In Table 1 we report, for each set-size condition separately, the
mean probability of the responses 3, 7, 11, and 15 as a function of
payoff condition (3, 7, 11, 15). As one would expect if observers
adjust their response biases in a sensible manner, the response
probabilities are greatest when the response is the one that is
signaled to receive the high payoff (if correct). Also as one would
expect, the effect is relatively small in the set-size two condition,
while it is dramatic in the set-size five and set-size eight condi-
tions. (Because subjects presumably have excellent memory rep-
resentations in the set-size two condition, responding will tend to
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be governed by the actually presented stimuli rather than by the
high-payoff response in that condition.)

Finally, in Table 2, we report complete identification-confusion
matrices, aggregated across the four payoff conditions, in each of
the set-size conditions. We also provide heat maps of the confusion
matrices in Figure 6 to assist the reader in gleaning their structure.
To produce the matrices, we averaged analogous entries across the
four separate response-payoff conditions. In particular, in each
payoff condition, we numbered the high-payoff stimulus-response
as Number 1, and then numbered the remaining stimulus-response
pairs in clockwise fashion from the high-payoff one. For example,
in high-payoff Condition 7, stimulus-response 7 was numbered 1,
Stimulus-Response 8 was numbered 2, and so forth. We then
averaged across the renumbered confusion matrices of each con-
dition to produce the aggregated matrices. Thus, row 1 of each
aggregated set-size matrix corresponds to the case in which the
high-payoff stimulus and the actually presented stimulus are the
same. Row 2 corresponds to the case in which the actually pre-
sented stimulus is one unit to the right of the high-payoff one; row
3 to the case in which the actually presented stimulus is two units
to the right of the high-payoff one; and so on until row 16, which
corresponds to the case in which the actually presented stimulus is
15 units to the right of the high-payoff one. Recall, of course, that
the stimulus-response pairs “wrap around,” such that row 16
corresponds to the presented stimulus that is one unit to the left of
the high-payoft one on the color circle.

To assist the reader in inspecting the structure of the tabled
matrices, all response probabilities with values greater than .05 are
shown in boldface font. (The corresponding heat maps are color-
coded to provide an additional perspective.) Inspection reveals that,
not surprisingly, one set of high-probability entries in the confusion
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Figure 5. Mean probability of response j given stimulus i, averaged
across Stimuli 3, 7, 11, and 15, with j ranging from I — 3 through i + 3.
The averages do not include cases in which each stimulus was signaled to
serve as the high-payoff item.

Table 1

Mean Proportion of Trials in Which Subjects Used Each High-Payoff
Response in Each High-Payoff Condition, Averaged Across All
Probed Items

Condition 3 7 11 15
Set size 2
3 094 .069 .069 .065
7 .062 108 .068 .069
11 .063 .067 .098 .063
15 .065 071 071 .096
Set size 5
3 240 072 .065 .064
7 .057 262 .083 .071
11 .050 073 .246 .066
15 .060 .069 .080 246
Set size 8
3 341 .065 075 .055
7 .047 345 075 .065
11 .057 .059 351 .065
15 .039 055 .075 374
Note. Rows correspond to the different high-payoff conditions, columns

correspond to responses. The boldface entries in each panel of the table are
cases in which the response is the high-payoff response for each condition.
All response probabilities with values greater than .05 are shown in
boldface font.

matrices are those that lie along the main diagonal or one unit adjacent
to the main diagonal—that is, the correct responses and the responses
attached to stimuli that are highly confusable with the actually pre-
sented stimulus. For the set-size two matrix, these diagonal-band
entries are the only high-probability entries. However, for the set-
size five and especially the set-size eight matrix (which provides
the most diagnostic data), there is a second set of high-probability
entries: namely those in column 1, corresponding to the high-
payoff response. Furthermore, note that, within each row, the cells
intermediate between the high-payoff response (column 1) and the
responses clustered around the diagonal tend to have exceedingly
small-magnitude entries, especially when the column number is far
away from the main diagonal. Then, once one reaches column 1,
there is a sudden jump to large-magnitude response probabilities.

Intuitively, the structural pattern inherent in these matrices is in
accord with the predictions from the mixed-state models. On trials
in which there is a memory for the actually presented stimulus, that
memory governs responding, and the responses are clustered
around the main diagonal. But on trials in which there is zero
memory for the actually presented stimulus, the subject is forced to
guess, and will guess with very high probability with the high-
payoff response. As will be seen, the variable-resources model will
struggle to accommodate this pattern, even when allowance is
made for memory-adjusted response biases: To anticipate, because
that model is more continuous in nature, it does not easily predict
the step-function-like jumps seen in the identification-confusion
matrices.®

¢ All subjects showed the same general pattern of results as illustrated
for the aggregated matrices in Table 2. However, the magnitude of the
biased guessing effect varied considerably across subjects. In particular,
the magnitude of the effect was much smaller for a set of subjects estimated
to have high memory capacity—see Modeling Analyses section for details.
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Table 2
Aggregated Identification Confusion Matrices With Stimulus-Response Pairs Relabeled Based on Their Relation to the
High-Payoff Item
Response
Stimulus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Set size two condition
1 879 .062 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000 057
2 253 .651 094 .000 .000 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000 .000
3 012 097 769 114 .007 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4 .009 .004 055 743 188 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
5 .004 .000 .000 .086 769 142 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
6 015 .000 .000 .002 092 798 090 .004 .000 .000 .000 .000 .000 .000 .000 .000
7 .011 .000 .000 .000 .005 .108 759 114 .002 .000 .000 .000 .000 .000 .000 .000
8 .009 .000 .000 .000 .000 .002 .016 766 .196 012 .000 .000 .000 .000 .000 .000
9 011 .000 .000 .000 .000 .000 .002 .087 783 117 .000 .000 .000 .000 .000 .000
10 015 .000 .000 .000 .000 .002 .000 .007 102 773 102 .000 .000 .000 .000 .000
11 013 .000 .000 .000 .000 .000 .000 .002 .006 070 801 107 .002 .000 .000 .000
12 .000 .000 .000 .002 .000 .000 .000 .000 .000 .002 .044 157 192 .004 .000 .000
13 015 .000 .000 .000 .000 .000 .000 .000 .000 .000 .002 .098 747 133 .005 .000
14 .004 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 116 766 .109 .006
15 .020 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .004 094 778 105
16 325 .002 .000 .000 .000 .000 .000 .000 .000 .000 .002 .000 .002 .000 .030 .640
Set size five condition
1 830 .047 .002 .008 .008 .004 .004 .004 .002 .006 .002 .004 .006 .009 .008 059
2 506 321 .100 .017 .017 .008 .000 .000 .008 .000 .004 .000 .004 .008 .002 .008
3 233 097 491 J121 .022 .005 .003 .002 .005 .003 .000 .003 .007 .007 .000 .000
4 .164 .009 077 435 264 .024 .005 .003 .002 .002 .000 .003 .002 .003 .005 .000
5 110 .004 .007 126 .556 129 .019 011 012 .004 .007 .002 .009 .000 .005 .000
6 142 .002 .000 .025 189 452 123 .021 .013 .004 .006 .006 .009 .004 .004 .002
7 141 .002 .004 014 .029 125 519 114 .024 .009 .007 .002 .004 .002 .004 .002
8 142 .000 .002 .000 .010 015 056 506 213 .031 .002 .008 .006 .002 .004 .004
9 142 .004 .007 .004 .002 .007 .007 133 516 137 .020 .005 .007 .005 .002 .002
10 150 .002 .002 .007 .003 .002 .002 .030 157 481 135 015 012 .003 .002 .000
11 127 .005 .002 .004 .004 .004 .004 .005 .033 .109 498 149 .040 .011 .004 .002
12 128 .000 .004 .002 .002 .000 .005 011 .009 014 .065 487 242 .027 .002 .002
13 174 .002 .002 .000 .007 .009 .002 .006 .006 011 .007 109 519 124 015 .007
14 .165 .002 .004 .000 .006 .004 .007 .007 .004 .002 .002 .022 193 447 111 .024
15 260 .000 .002 .004 .000 .007 .002 .007 .004 .005 .002 .005 .032 110 475 .085
16 571 .006 .000 .004 .004 .002 .002 .002 .011 .006 .000 .006 .007 .013 .041 327
Set size eight condition
1 762 .035 016 .016 .024 .008 .008 .018 .020 .012 .004 .008 .018 .010 .012 .031
2 .611 199 056 .021 016 .005 .007 012 014 014 .007 .005 .010 .010 .005 .007
3 356 069 326 .108 .041 .018 .005 .009 .012 .005 .005 .012 .014 .012 .004 .004
4 278 .010 059 317 178 .033 014 012 .020 014 .002 .012 .031 018 .002 .002
5 262 .005 025 082 381 118 016 012 018 .021 012 .005 .012 .012 .007 .009
6 284 .006 .006 .019 131 333 .090 .022 .028 015 .013 .013 .022 011 .007 .000
7 292 .006 011 011 .043 .106 294 102 .047 .024 .009 011 .013 .017 .007 .006
8 223 .004 011 013 .026 .026 .060 331 207 .031 .007 .011 .018 .020 .004 .009
9 271 .007 .005 .007 .025 014 012 .100 .348 137 .020 .021 .020 .005 .005 .002
10 252 .007 014 011 .020 014 .014 .028 .160 309 .103 .023 .028 .009 .005 .002
11 251 .002 .002 .004 017 011 .004 .024 .039 141 292 125 .053 .026 .009 .002
12 269 .007 012 019 016 012 .007 012 .026 .038 055 .286 192 .040 .002 .007
13 278 .000 .007 .007 012 012 .007 .013 .013 .015 .012 095 360 142 .018 .010
14 296 .008 .007 .008 012 .010 017 012 .022 015 014 .041 113 321 079 .025
15 373 .002 .009 .011 .018 .007 .007 .017 .017 .007 .009 .017 .028 .085 325 067
16 587 .006 .010 012 017 014 016 .008 016 012 .008 .008 .016 .017 052 203
Note. In each matrix, response-column 1 is the high-payoff response column. Row (or column) i is the stimulus (or response) that is i—1 units to the right

of the high-payoff item along the color circle. All response probabilities with values greater than .05 are shown in boldface font.
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To reiterate, the data presentation is this section has constituted
only an intuitive preview. The rigorous forms of evidence are
presented in the next section, which provides detailed formal
modeling of the individual-subject confusion matrices.

The Formal Models

General Approach

We start by outlining modeling components that are common
across the present mixed-state and variable-resources models. Note
that in most past modeling of performance in the continuous-reproduction
paradigm, a core component involves use of circular normal distribu-
tions for predicting choice probabilities. Because we reject the as-
sumption that the stimulus domain is necessarily perfectly circular,
and because we wish to incorporate response-bias parameters as
modulators of memory-based information, we adopt an alternative
modeling framework in the present research. Specifically, our formal
modeling builds upon the classic similarity choice model (SCM) of
identification confusion data (Luce, 1963; Shepard, 1957). According
to the core version of the SCM, the probability that item i is identified
with response j (py;) is given by

Py = bjSij/Ek by (D

where s;,(0 <'s;;, s;; = s;;) is the “similarity” between objects i and j;
b,(0 <b;) is the “bias” associated with response j; and the normalizing
sum in the denominator of Equation 1 is across all cells in row i of the
identification-confusion matrix. In Shepard’s (1957, 1958) formula-
tion of the model, the similarities were interpreted as being inversely
related to distances in a psychological space. Nosofsky (1985) pur-
sued that approach and termed the resulting model the
“multidimensional-scaling (MDS) choice model”. In the MDS-choice
model, each object is represented as a point in an M-dimensional
psychological space. Assuming the euclidean-distance version of the
model, the distance between objects i and j is given by

&= V(Z Xim— xpml?), )

where x;,, is the value of object i on dimension m. Following
Shepard (1958, 1987), the similarity between objects i and j is then
assumed to be an exponential decay function of the distance
between the objects,

Sij = exp(—C . dij)’ (3)

where ¢ is an overall sensitivity parameter that reflects the rate at
which similarity declines with distance.” In the present applica-
tions, in which the stimuli are conceived as residing in a roughly
circular configuration, we assume that the psychological space is
two-dimensional. In one set of models, the coordinate parameters
of the objects are held fixed such that the objects reside at evenly
spaced intervals along a perfect circle; this constrained set of
models is analogous to the usual approach adopted in the VWM
field when fitting continuous-reproduction data. In the second set
of models, a more general scaling approach is adopted, with the
coordinates of each stimulus along the two dimensions treated as
freely estimated parameters. The coordinate parameters are held
fixed, however, across the different memory set-size and response-
payoff conditions.

In all of the models, each of the responses is associated with a
freely estimated “base” response-bias parameter b;. Numerous
factors may influence the settings of the base response-bias pa-
rameters. For example, Bae, Olkkonen, Allred, and Flombaum
(2015), Hardman, Vergauwe, and Ricker (2017), and Persaud and
Hemmer (2016) provided evidence that observers have preferences
for responding with representatives of canonical color categories
in VWM color-reproduction tasks. To take another example, the
color responses in our design occupied fixed locations on the
discretized color wheel; thus, the response biases could also be
influenced by location preferences.

In the present design, payoffs for alternative correct responses
were manipulated across the conditions. To capture the influence
of this manipulation on performance, we define a response-bias-
multiplier parameter Bg. On trials in which response j is signaled
to receive the high payoff (if correct), the “operating” bias asso-
ciated with response j is given by

b; = Bg - b;. (4a)
Otherwise, the operating bias is the same as the base bias,
b; = b;. (4b)

The operating biases from Equations 4a and 4b are the values
that are incorporated in the choice-model decision rule formalized
in Equation 1.

Mixed-State Models

In the mixed-state models, the MDS-choice model described
above is elaborated in the following ways. First, in each of the
three memory set-size (ss) conditions, the probed study item
is assumed to be held in VWM with probability p,,..,(ss). Presum-
ably, these memory-storage probabilities decline with set size,
although the values are treated as free parameters in the present
applications. If the probed item is in the memory state, then the
MDS-choice model described above governs performance. We
make allowance for the possibility, however, that overall sensitiv-
ity in the model (i.e., ¢ in Equation 3) may vary with set size. The
expectation is that overall memory sensitivity will tend to decrease
as memory set-size increases. This expectation is motivated by
modern versions of “slot-averaging” models (e.g., Zhang & Luck,
2008), which suppose that richer memory representations can be
developed for small-size memory sets that do not exceed some
fixed-slots limit.

Alternatively, with probability 1 — p,,,..,(ss) the probed item is
in the zero-memory state and the observer is forced to guess. To
reduce the number of free parameters needed for fitting the model,
we assume that the probability that the observer guesses with
response j is given by

g=b/2 by, ()

where the operating b;s are defined as in Equation 4 (i.e., we do

7 Under conditions involving the identification of highly confusable
stimuli with large amounts of sensory noise, the data are often better fitted
using a Gaussian similarity gradient rather than an exponential gradient
(e.g., Nosofsky, 1985). We fitted the data using both assumptions, and the
exponential model tended to fit better than the Gaussian one. None of our
major conclusions depended on the choice between these two similarity
gradients.
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Figure 6. Heat-map depictions of the structure of the aggregated
identification-confusion matrices reported in Table 2. The probability
values associated with the colors are: black: <.05; blue: .05-.10; cyan:
.10-.20; green: .20-.30; yellow: .30—.40; orange: .40-.50; red:
.50-.60; white: >.60. See the online article for the color version of this
figure.

not define a separate set of bias parameters for the guessing
process). However, the power-parameter y in Equation 5 allows
for the possibility that when the observer is in the guessing
state, there is magnification in the differences between the
relative values of the operating response biases: As vy increases
in magnitude, the observer guesses with increased probability

with the response that has the greatest operating bias—presum-
ably, the high-payoff response that is selected for each trial.

Combining the development outlined above, according to the
mixed-state model, the overall probability that the observer makes
response j given probe-stimulus i is given by

P(R]ISI) = pmem(ss) Py + [1 - pmem(ss)] - & (6)

where p;; is given by the MDS-choice model described above, and
g; is the guess-j probability. The constrained version of the mixed
model (with stimuli located along an evenly spaced circle) makes
use of 23 free parameters: three values of p,,..,, one for each set
size; three values of c, one for each set size; the response-bias
multiplier By (Equation 4); the guessing power parameter y (Equa-
tion 5); and 16 “base” response-bias parameters bj' (15 of which
constitute free parameters). The generalized model (with freely
estimated coordinate parameters for each stimulus in the set) uses
30 additional free parameters.

Variable-Sensitivity Models

Within the present MDS-choice framework, the analogues of the
variable-resources models described in our introduction are
variable-sensitivity models. In particular, the sensitivity parameter
¢ (Equation 3) is presumed to be variable across different set sizes
and across items within each set size. So, for example, on some
trials a high-sensitivity memory representation might govern re-
sponding; on other trials a medium-sensitivity representation; and
on still other trials a low-sensitivity representation.

We sought to develop a modeling approach that allowed for
reasonable flexibility in how the values of ¢ might vary, but
without allowing assumptions that would simply turn the variable-
sensitivity models into mixed-state models (see below for further
discussion). In particular, we assumed that the values of c¢ vary
probabilistically in continuous fashion across set sizes, items and
trials, in a manner analogous to the way that variances are pre-
sumed to vary in current versions of variable-resources models.

As a probabilistic model for selecting variable values of ¢ across
set sizes, trials, and items, we used truncated normal distributions,
as illustrated in Figure 7. The lower limit of the truncated normal
was set at Cy,, = 0; the upper limit was set at ¢,,,.,(ss), which
was a free parameter allowed to vary with memory set size. (The
mean of the truncated normal is simply ¢, ..(s$)/2.) The standard
deviation of the truncated normal was also a free parameter that
was allowed to vary with memory set size, a(ss). We partitioned
the truncated normal into nine equal-spaced values of ¢, starting
with ¢, = 0 and ending with c,, ..., with the assumption that the
probability that each value of c¢ operated on a given trial was
proportional to its probability density in the truncated normal.

Thus, to generate predictions from this variable-sensitivity model,
one would compute the MDS-choice-model predictions of p;; for each
of the nine values of ¢ (using Equations 1-4), and with the overall
predictions of P(R;|S;) then being a probabilistically weighted
average across the nine p;; values:

P(R{|S) = 2 p(cy) - pii(ci). @)

where p(c,) is the probability that sensitivity value c, is the
operating sensitivity value for the given set size; and p;;(c,) is the
MDS-choice model prediction that stimulus i leads to response j
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Probabilty Density

C1= 0 C2 C3 C4 C5 CS C7 Cs
Sensitivity Value

c9= cupper

Figure 7. Schematic illustration of the probabilistic mixture of sensitivity
(c) values selected from a truncated normal distribution for the variable-
sensitivity model.

under sensitivity-level c,. Again, as explained in the introduction
to this section, the predictions of the individual p;’s in Equation 7
incorporate the magnified response biases associated with high-
payoff items (Equation 4).

The constrained (“perfect circle”) version of this variable-
sensitivity model uses 22 free parameters: three values of ¢, ..,
one for each set size; three values of o, one for each set size; the
bias-multiplier parameter Bg; and 15 freely varying base response-
bias parameters. The generalized version adds 30 freely varying
coordinate parameters to this total.

Note that the variable-sensitivity model allows a good deal of
flexibility in the manner in which overall sensitivity may vary
across different set sizes and items. For example, for very small set
sizes (ss = 2), one expects that overall memory sensitivity will
tend to be very high, with little variability across items and trials.
This state of affairs can be captured in the model by setting ¢, per
at a high value and o at a value near zero. By contrast, for very
large memory set sizes (ss = 8), overall sensitivity would tend to
be lower, but could vary considerably across different items within
the display on any given trial. This state of affairs can be captured
by setting c,,,,p,., at a lower value, but o at a relatively high value.
Although the approach is reasonably flexible, it explicitly avoids
making allowance for bimodal discontinuities in the setting of
values of ¢ across items and trials. For example, one might define
a bimodal probability distribution, with one mode corresponding to
a high value of ¢, and a second mode corresponding to a zero value
of c. In our view, such a mechanism is ad hoc and entirely against
the spirit of current variable-resources models, which posit con-
tinuous variations in memory resolution across items and trials.®

Assuming that, for any given set size, memory sensitivity does
vary in a reasonably continuous manner across items and trials, our
intuition was that the present design would allow for a strong
contrast between the predictions from the mixed-state and
variable-sensitivity models. To review our previous reasoning,
according to the mixed-state models, a probed item is either in

VWM, in which case the chosen response should hover some-
where close to the studied item; or else there is zero memory for
the item, in which case an observer would tend to guess with the
high-payoff response. An implication is that there will tend to be
big “gaps” within any given row of the identification-confusion
matrix: That is, there will be clusters of responses near the
studied item, and another mass of responses at the high-payoff
response (which may be located far from the studied item), but
there will be sequences of cells with near-zero entries lying
between these two response clusters. With appropriate choice of
free parameters, the variable-sensitivity model can mimic (to
some extent) this type of response pattern, by setting a large-
magnitude response bias for the high-payoff response. Thus,
there will tend to be high-magnitude response probabilities
associated with both low-payoff correct responses (when sen-
sitivity is high) and high-payoff incorrect responses (when
sensitivity is low). Crucially, however, because sensitivity var-
ies continuously across items and trials, our intuition was that
the model would be unable to predict long sequences of near-
zero entries within the rows: Cells intermediate between the two
response clusters will also tend to have a significant number of
response entries (stemming from cases in which intermediate
sensitivity values were in operation). As will been, the results
from our formal model analyses appear to confirm these intu-
itions.

Finally, we should note that more fully specified versions of the
mixed-state and variable-sensitivity models would also make al-
lowance for occasional lapses of attention (e.g., Rouder et al.,
2008) and location-based confusion errors (e.g., Bays, Catalao, &
Husain, 2009; Oberauer & Lin, 2017). We will argue in our
General Discussion section, however, that including these compli-
cating factors would not change the fundamental conclusions
derived from the results of comparing the present versions of the
models.

Model-Fitting Approach

Because there were three set-size conditions crossed with four
payoff conditions, the data set for each subject comprises 12
identification-confusion matrices (with each matrix having 16 X 16
cells). The models were fitted simultaneously to these 12 matrices.
(The individual-subject matrices are reported in the online website
osf.io/se3uc/.)

We used a maximum-likelihood criterion in fitting the models to
each individual subject’s identification-confusion data. As in pre-
vious work (e.g., Nosofsky, 1985; Smith, 1980), the likelihood
function assumed that the responses in each row of each confusion
matrix followed a multinomial distribution and that the distribu-
tions across rows were independent. We used the Hooke and
Jeeves (1961) parameter-search algorithm to locate the best-fitting
parameters. To avoid local minima, we used 10 different random

8 For example, in the most usual approach to simulating variable-
resources models, each memory set size is associated with a continuous
gamma distribution with scale parameter that varies with set size; a
precision value is randomly selected from the continuous gamma distribu-
tion; and the item’s memory variance is inversely related to the sampled
precision (e.g., van den Berg et al., 2012).
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starting configurations of the free parameters of each model for
each parameter search.

To compare fits of models that used different numbers of free
parameters, we calculated the BIC statistic (Schwarz, 1978). Ac-
cording to the BIC, the fit of a model is given by

BIC = —2In(L) + PIn(N), 8)

where In(L) is the (maximum) log-likelihood, P is the number of
free parameters used by the model, and N is the number of data
observations. The term PIn(#) in Equation 8 penalizes a model for
its use of free parameters. The model that minimizes BIC is
considered to provide the most parsimonious account of the data.
Compared with common alternative fit statistics (such as the AIC;
Akaike, 1974), the BIC tends to favor simpler models. That is, the
BIC tends to be conservative in selecting models with larger
numbers of free parameters. Model-recovery analyses revealed
that our sample sizes and fit statistics were more than adequate for
developing sharp contrasts between the models. The recovery
analyses proceeded as follows. First, using the best-fitting param-
eters for each individual subject from the mixed-state model, we
generated 10 simulated data sets for each subject (80 total data
sets). Analogously, using the best-fitting parameters from the
variable-sensitivity model, we generated 80 simulated data sets
from that model. Each simulated data set had the same total
number of trials in each condition as did the actual subjects. We
then fitted each of the models to each simulated data set and
compared their fits using the BIC. We found that both the mixed-
state and variable-sensitivity models were correctly recovered for
over 95% of the data sets that they had generated.

Model-Fitting Results

Model fits. The BIC fits of the alternative models are reported
for each of the individual subjects in Table 3. (In addition to the
models described above, we fitted special-case versions of the
mixed-state models that did not allow a guessing process, i.e., in
which all the p,,..,,, parameters were held fixed at unity. In addition
to being a special case of the mixed-state models, these models are
also special cases of the variable-sensitivity models in which the
sensitivity-variability parameter o is held fixed at zero.)

Inspection of Table 3 reveals that, regardless of whether one
assumes a constrained scaling solution (a perfect circle) or a
generalized scaling solution, the mixed-state model yields better
BIC fits than does the variable-sensitivity model for all eight
subjects. For Subjects 1, 2, 3, and 5 the differences in fit are small

to moderate, but for Subjects 4, 6, 7, and 8 the differences are quite
dramatic. As will be seen, the differences in fit tend to be smaller
in cases in which subjects had high working memory capacity, that
is, large estimates of p,,.., at all set sizes. This pattern makes
sense, because if guessing probabilities are reduced, it will be more
difficult to detect differences in the fits of the mixed-state and
variable-sensitivity models. Nevertheless, the guessing parameters
are crucial in allowing the mixed-state model to achieve good fits:
For nearly all subjects (except perhaps S3), the no-guessing ver-
sion of the mixed-state model fares considerably worse than does
the guessing version. In addition, for six of the eight subjects, the
version of the mixed-state model that allows a generalized scaling
solution for the colors yields a better BIC fit than does the
constrained version. Not surprisingly, the improvement in fit for
the generalized model is dramatic for the subject with partial
color-blindness (S8).

To bring out the reasons for the better fits yielded by the
mixed-state model compared to the variable-sensitivity model, in
Figure 8 we provide scatterplots of observed-against-predicted
identification-confusion probabilities for a representative subject
(S4). The left panels show the results from the mixed-state model
and the right panels show the results from the variable-sensitivity
model. To remove noise from the plots and bring out the critical
comparisons of interest, we again averaged analogous entries
across the four separate response-payoff conditions (as described
in the Results section). In particular, in each condition, we num-
bered the high-payoff response as Response 1, and then numbered
the remaining responses in clockwise fashion from the high-payoff
response. For example, in high-payoff-Condition R3, Response 3
was numbered 1, Response 4 was numbered 2, and so forth. We
then averaged across the relabeled confusion matrices of each
payoff condition.

As indicated in the Figure 8 scatterplots, we distinguish among
four main types of stimulus-response probabilities: correct re-
sponses that received a high payoft (solid circle), correct responses
that did not receive the high payoff (solid triangles), incorrect re-
sponses in which the observer responded with the high-payoff re-
sponse (open squares), and incorrect responses in which the observer
did not respond with the high-payoff response (crosses). Naturally,
across all set-size conditions, the highest probability entry is generally
the correct response that receives the high payoff—the solid circle to
the upper-right of each scatterplot. Likewise, across all set-size con-
ditions, the lowest-probability entries tend to be the incorrect re-
sponses that were not signaled to receive a high payoff—the

Table 3
BIC Fits of Each of the Models to Each Subject’s Identification-Confusion Data
Subject #
Model 1 2 3 4 5 6 7 8

General mixed-state 9657.1 9495.5 8747.2 9575.9 10837.0 11059.0 7611.5 7584.7
General mixed-state, no guessing 9822.1 9599.3 8764.4 10153.9 10910.7 11443.5 8746.4 8079.9
Constrained mixed-state 9555.4 9640.5 8823.2 9765.1 10791.0 11096.7 8965.3 8605.5
Constrained mixed-state, no guessing 9792.8 9824.0 8840.7 10430.3 10948.6 11588.9 9412.0 8585.9
General variable-sensitivity 9716.0 9531.2 8763.7 9884.6 10869.7 11231.9 8704.1 7707.7
Constrained variable sensitivity 9600.2 9659.3 8831.6 9938.8 10807.8 11346.0 9541.2 8887.7

Note. The minimum BIC value for each subject is shown in boldface font. In the general models, each stimulus had two freely estimated coordinate
parameters. In the constrained models, the stimuli were assumed to be evenly spaced on a circle.
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Figure 8. Scatterplots of observed against predicted identification confusion probabilities for Subject 4. Left
panels: mixed-state model. Right panels: variable-sensitivity model. See the online article for the color version

of this figure.

crosses to the lower-left of each scatterplot. The data of greatest
interest are the solid triangles (correct response, low payoff) and
open squares (incorrect high-payoff response). For set-size two,
the correct-response low-payoff probabilities are far greater in
magnitude than are the incorrect-response high-payoff probabili-
ties. However, by the time one reaches set-size eight, there is a
crossover, with the incorrect-response high-payoff probabilities
now being greater in magnitude.

As can be seen from inspection of the scatterplots, the mixed-
state model comfortably captures all these performance patterns
(left panels of Figure 8); however, the variable-sensitivity model
struggles in its attempt to do the same (right panels of Figure 8).
Most notably, at set-size eight, for the variable-sensitivity model,
the observed probabilities with which the subject incorrectly uses

the high-payoff response lie systematically above the predicted
probabilities (open squares). Our detailed inspection of the confu-
sion matrices revealed that this misprediction was most severe in
the cases in which the high-payoff response was located far away
from the actually studied item. The mixed-state model provides a
natural explanation for these high-probability confusion errors: on
a large proportion of trials in the set-size eight condition, there is
zero memory for the studied item, so the subject is forced to guess.
Further, the subject has a strong tendency to guess with the
high-payoff response. The same guess occurs regardless of how far
away the high-payoff response is from the studied item, because
there is zero memory for the studied item.

In follow-up analyses, we estimated parameters for S4 that
“forced” the variable-sensitivity model to predict the high-
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